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Abstract 

 
With the development of deep learning, face inpainting has been significantly enhanced in the 
past few years. Although image inpainting framework integrated with generative adversarial 
network or attention mechanism enhanced the semantic understanding among facial 
components, the issues of reconstruction on corrupted regions are still worthy to explore, such 
as blurred edge structure, excessive smoothness, unreasonable semantic understanding and 
visual artifacts, etc. To address these issues, we propose a Learnable Structure Knowledge of 
Fusion Network (LSK-FNet), which learns a prior knowledge by edge generation network for 
image inpainting. The architecture involves two steps: Firstly, structure information obtained 
by edge generation network is used as the prior knowledge for face inpainting network. 
Secondly, both the generated prior knowledge and the incomplete image are fed into the face 
inpainting network together to get the fusion information. To improve the accuracy of 
inpainting, both of gated convolution and region normalization are applied in our proposed 
model. We evaluate our LSK-FNet qualitatively and quantitatively on the CelebA-HQ dataset. 
The experimental results demonstrate that the edge structure and details of facial images can 
be improved by using LSK-FNet. Our model surpasses the compared models on L1, PSNR 
and SSIM metrics. When the masked region is less than 20%, L1 loss reduce by more than 
4.3%. 
 
 
Keywords: Face Inpainting, Image Edge, Gated Convolution, Region Normalization，Prior 
Knowledge. 
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1. Introduction 

Image inpainting is a task which aim to recover the missing region of an image with the 
known information of the uncorrupted region or other information. Its goal includes mainly 
three holdings: reconstructed image reasonable, visual continuity and scene consistency. As a 
branch of image inpainting, face inpainting pays more attention to the rationality of semantics 
and structure, which is even more challenging. Different from other branches of image 
inpainting, the face structure pattern contains rich semantic representation such as eyes, mouth, 
nose, etc. Both low and intermediate-level visual features of the known region are not enough 
to infer the missing part of valid semantic features [1, 2], so it is unable to model the face 
geometric structure.  

In the field of computer vision, there are two types of image inpainting methods: traditional 
and deep learning-based methods. Traditional image inpainting methods have some limitations 
which the model can only obtain low-level pixel features, so it can't capture the high-level 
semantics [3-9]. When filling missed facial details and complex scenes, it would lead to serious 
failure. The deep learning methods can carry out meaningful learning from the dataset through 
the network, and reconstruct the corrupted image in an end-to-end way. This method can fill 
the missing region semantically.  

Some deep learning-based methods of face inpainting fail to separate the structure and 
texture information effectively, which will result in fuzzy edge structure and excessive 
smoothness. In order to solve these problems, the existing deep learning methods introduce 
prior knowledge to model the corrupted face. GFC is the first to use the prior knowledge of 
facial structure as loss constraint to assist reconstruction on missing regions, which can 
generate more reasonable missing part [10]. However, it’s not suitable to fill irregular hole. 
To make full use of the geometric priors of facial structures, FCEN takes the thermal graph 
and segmentation graph of facial key points as prior knowledge for inpainting network to 
constrain network training. However, the inaccuracy of the thermal map detection, it is easy 
to cause the unconformity between the reconstructed details and the original image [11]. 
EdgeConnect proposes a two-stage training model composed of edge and image generator 
network. The edge generator restores the edge contour of the missing region, and the image 
generator network takes the restored edge information as prior to fill the missing region, but it 
still exists texture blur [12]. 

In order to further solve the problems described above, we proposed LSK-FNet model that 
combines edge generator network and face inpainting network to learns a prior knowledge for 
image inpainting. Similar to the idea proposed in BrainIoT [43], learning the edge information 
in the LSK-FNet model is based on the relationship between facial images and 
edge information. To improve the performance of image inpainting, we regard the learned 
edge information as the prior knowledge for facial image inpainting. The edge generation 
network is integrated with gated convolution to generate more accurate prior knowledge, while 
the face inpainting network uses prior knowledge, gated convolution and region normalization 
to generate fine details for missing region. Our main contributions are presented as follows: 

 We proposed an image inpainting framework with learnable structure knowledge, 
which consists of edge generator and face inpainting. Edge generator could learn 
edge structure through a GAN combined with gated convolution and residual blocks. 
As prior information, edge structure is integrated into the face inpainting network. 
This essential two-step framework makes the reconstructed image structure more 
reasonable. 
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 We use gated convolution in both network of edge generation and face inpainting. 
As a learnable mask updating mechanism for improving the structural integrity of 
missing regions, gated convolution can not only select features according to 
background, mask and sketch, but also utilize some channels’ dynamic semantics 
features. 

 We integrate region normalization, a learnable normalization method, into the face 
inpainting network. It normalizes the known region and the missing region 
respectively, which can effectively solve the problem of mean and variance shift, 
and hold the global and local structural consistency. 

2. Related Work 
Image inpainting The traditional image inpainting based on patch-based method [3] seeks the 
best matching blocks through known regions and relies on appropriate example patches in the 
context, which is unable to create new objects or textures. In recent years, many deep learning-
based methods have been proposed. Context Encoder was the earliest model that used 
generative adversarial network to fill missing image. It adopts encoder-decoder structure, 
which can reasonably predict the image. But, it’s difficult to maintain global consistency [13]. 
Iizuka et al., used local and global discriminators respectively to generate real alternative 
content for the missing region and maintain the consistency of the image. They also use dilated 
convolution to increase the receptive field to improve the continuity of the missing edge [14]. 
In order to generate more realistic images with visual effects, some generation models usually 
incorporate spatial attention mechanism into the generator to improve the restoration effect of 
texture [15-21]. Since vanilla convolution uses the same convolution operation for all pixels 
resulting in fuzzy results when filling irregular missing hole, Liu et al., proposed partial 
convolution, which uses a binary mask to control the convolution area, so that the convolution 
only depends on the effective pixel. However, all channels in each layer share the same weight, 
and the feature extraction is not flexible enough [22]. Therefore, Yu et al., used gated 
convolution to extend the feature selection mechanism of each layer in the network to learn 
position information, and further generalize the idea of partial convolution to make the restored 
image more consistent with the real structure [23]. 
Face inpainting Due to the complexity and diversity of facial structures, traditional inpainting 
methods are no longer applicable. Li et al., proposed a semantically interpreted facial 
generation network, which used semantic segmentation to divide the face image into 11 
regions. It used the semantic gap between the restored image and the real image as the semantic 
loss regularization term to constrain the network training [10]. Zheng et al., took the improved 
variational autoencoder as generation network, which can produce a variety of completion 
results while ensuring the generation quality [25]. Zhou et al., took facial information as prior 
knowledge and added multiple discriminators to these areas to improve the accuracy of face 
inpainting [41]. Li et al., proposed an improved GAN to restore the self-collected dataset of 
high-resolution human face. It output better human visual performance image when restore 
with irregular holes using the global average pooling in their network [42]. But the method is 
applied to mobile phone, not suitable for our digital document manufacturing application. 
Structure Information for Inpainting Current image inpainting methods usually use 
different types of structural knowledge as prior knowledge to assist image inpainting [10, 11, 
19, 26-30]. SPG-Net method predicted semantic segmentation labels of missing regions as 
structural information to constrain training. However, areas with similar semantic labels may 
have different textures (for example, windows and walls of the same building). This makes it 
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difficult to recover the image [19]. Li et al., proposed progressive reconstruction of visual 
structure (PRVS), which gradually integrates structural information into image features to 
output more structured images [28]. Nazeri et al., added edge generation to image completion. 
First, the complete edge information is predicted by the edge generation network. Then it is 
integrated into the image inpainting network, so that the image inpainting network can 
perceive the structural information [12]. Xiong et al., proposed an image inpainting model 
based on foreground perception, which divided the model into multiple subnets and gradually 
guide the completion of the image [26]. The model could perceive salience knowledge. The 
model first learns to predict the foreground contour, and then uses the predicted contour as a 
guide to draw in the missing region. These four methods use the structural information of 
incomplete images as priori knowledge to improve the accuracy of image inpainting. But there 
is still potential to improve performance. 

3. Our Approach 

3.1 LSK-FNet 
Our approach, we called LSK-FNet, is based on a two step’s GAN. As shown in Fig. 1, the 
overall model includes two networks: edge generation network and face inpainting network. 
Each network is composed of a generator and a discriminator, named G and D respectively. 
Mask, corrupted edge and incomplete grayscale images are put to the edge generation network 
simultaneously to produce the predicted edge. Predicted edge (training) and truth edge are used 
to train the D1(the discriminator of edge generation network). In the face inpainting network, 
predicted edge (trained) and corrupted face image are used to produce the output with G2(the 
generator of face inpainting network). Truth image and inpainted image (training) is used to 
train the D2(the discriminator of face inpainting network). Finally, output the inpainted image 
(trained). Both the edge generation network and the face inpainting network are GAN 
essentially. Intuitively, face inpainting guided by the edges is more effect than nothing guided. 
Because face detail is generally contained in these edges, hence edges could be considered as 
prior knowledge, which indicate the structure information and the information about the way 
how to fill the holes. 

Gated convolutions with residual blocks are fused in the both of the edge generation 
network and the face inpainting network. The gated convolution has the capability of a 
learnable mask updating mechanism, so the edge generation network fused with gated 
convolution could discovery the hidden information among these visual features. The face 
inpainting network fused with gated convolution could combines background, mask and 
sketch, also consider the semantic segmentation of some channels, which can improve the 
structural integrity of missing regions. 

Region normalization (RN) is used to promote performance of the face inpainting network. 
As a typical normalization feature across spatial dimension, previous image inpainting 
methods apply usually feature normalization (FN) in their networks. Shifts of mean and 
variance will occur due to the normalization impact ignoring of the input image corrupted 
regions. RN can effectively solve the problems of these two shifts. RN is a learnable way, 
which can normalize the known region and the missing region respectively. RN has the 
advantage to hole the global and the local structure consistency simultaneously. 
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Fig. 1. Overall architecture of our proposed model 

 

3.2 Edge Generation Network 
Gated convolution can automatically learn mask update strategies from data [23]. It not only 
can dynamically identify the position of effective pixels in the image but also excel at 
transforming corrupted and uncorrupted regions distinctively to help the fusion of them. The 
formular defined as: 

⎩
⎪
⎨

⎪
⎧ Gatingy,x = ��Wg ∙ I

Featurey,x = ��Wf ∙ I

Oy,x = Φ(Featurey,x)⨀σ(Gatingy,x)

 

Where σ is sigmoid function thus the output gating values are between zeros and ones. 𝛷𝛷 can 
be any activation functions (such as, ReLU, ELU and LeakyReLU). 𝑊𝑊𝑔𝑔 and 𝑊𝑊𝑓𝑓  are two 
different convolutional filters that extract meaningful information though element-wise 
multiplication on effective pixels and image features. Both image and mask are input into 
gated convolution to train synchronously, rather than individually in vanilla convolution. This 
makes the results of image inpainting more accuracy. 

As shown in Fig. 2, edge generation network consists of Generator (G1) and Discriminator 
(D1). Specifically, the generator is composed of encoder that down-sample twice, followed by 
eight residual blocks [34] and the decoder that up-sample twice. Residual blocks can avoid 
gradient diffusion problem caused by deeper networks. Each layer of the network uses gated 
convolutions, instead of vanilla convolution, to study semantic segmentation in some channels, 
which can not only learn to select different features along with mask, sketch, and background, 
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but also generate more plausible inpainting results. The discriminators based on a 70×70 
PatchGAN [33] architecture is used to estimate the validity of edge map and parameters, and 
intensify ability of discrimination for image. Generally, spectral normalization is employed in 
all edge generation networks [35]. 

 D1 is used to verify whether the predicted edge (training) is accuracy. The performance of 
discriminator for edge images will be improved via continuous learning. We used Canny edge 
detector [12] to extract truth edge information of completed images. Next, the extracted truth 
edge information combined with predicted edge (training) are input into D1 to improve the 
ability of discrimination. Through repeated learning, the final output of edge image is close to 
the real edge. 
 

 
Fig. 2. Edge Generation Network 

 
Let Tgt be ground truth images. Their edge map and grayscale counterpart will be denoted 

by Cgt and Tgray, respectively. Image mask M denotes a precondition (1 for the missing region, 
0 for background). ⨀  denotes element-wise multiplication. G1 is the generator of edge 
information. In the edge generator, we use the corrupted grayscale T�gray = Tgray⨀(1− M) as 
input, and its corrupted edge is C�gt = Cgt⨀(1 − M). The generator predicts the edge map for 
the masked region. 

                                                  Cpred = G1(T�gray, Cgt, M)                                                (1) 
We use Cgt and Cpred conditioned on  Tgray  as inputs of the discriminator that predicts 

whether or not a predicted edge image is real. The loss function is constructed to train the 
generative adversarial network to obtain the edge generation network. The adversarial loss is 
defined in formula (2) and the feature matching loss is defined in formula (3). 

     ℒadv1 = 𝔼𝔼(Cgt，Tgray) log�D1�Cgt，Tgray��+𝔼𝔼 Tgray log[1 − D1�Cpred，Tgray�]      (2) 

                                    ℒFM = 𝔼𝔼[∑ ||D1(i)�Cgt�−D1(i)�Cpred�||𝟏𝟏
Ni

𝐋𝐋
𝐢𝐢=𝟏𝟏 ]                                     (3) 

Where L is the final convolution layer of the discriminator, D1(i) is the number of elements 
in the i’th activation layer, and Niis the activation in the i'th layer of the discriminator. The 
edge generator network is comprised of an adversarial loss and feature-matching loss which 
are defined as 

                    min
G1

max
D1

ℒG1 = min
G1

(λadv1 max
D1

(ℒadv1) + λFMℒFM)                               (4) 
Where λadv1 and λFM are regularization parameters. In our experiments, we set 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎1= 1 

and λFM= 10, which has been shown to be effective in previous work [12]. 
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3.3 Face Inpainting Network 
Yu et al., proposed that RN divides spatial pixels into different regions according to the input 
mask, and computes the mean and variance in each region for normalization (shown in Fig. 3) 
[31]. Where N, C, H, Ware batch size, channel quantity, height, and width respectively. The 
blue and black boxes denote the corrupted and uncorrupted data respectively, which will be 
normalized separately later. There are two kinds of RN for image inpainting network: (1) Basic 
RN (RN-B), In the early layers of the network, the input image has massive corrupted areas, 
which lead to serious mean and variance shift problems, which are solved by RN-B via 
separately normalizing corrupted and uncorrupted regions. (2) Learnable RN (RN-L), it is 
difficult to obtain a region mask from the original mask after passing through several 
convolutional layers as the corrupted regions are gradually fused. RN-L solve the difficulty by 
learning to detect potentially corrupted regions via utilizing the spatial relationship of the input 
feature and generates a region mask for RN. Furthermore, RN-L can also boost the 
combination of corrupted and uncorrupted regions by global affine transformation. RN-L not 
only solves the mean and variance shift problem, but also enhance the reconstruction of 
corrupted regions. RN-L is suitable for latter layers of the network. 
 

 
Fig. 3. Region Normalization 

 
The architecture of face inpainting network (shown in Fig. 4) consist of G2 and D2, which 

is similar to edge generation network. In the face inpainting network, the generators consist of 
encoders that down-sample twice, followed by eight residual blocks and decoders that up-
sample images back to the original size. Gated convolution is used in the residual block of the 
generator to extract the input image features, and it can learn constantly to distinguish 
corrupted and uncorrupted regions. Negative effects of corrupted region on face inpainting can 
be reduced. The color and detailed texture structure of image inpainting are more reasonable. 
Finally, the quality of the image inpainting is improved. RN will be used in the network. It 
uses spatial relations of input features to estimate potential corrupted regions to generates 
region mask and performs global affine transformation to enhance their fusion. Then, mean 
and variance shift problem are solved and reconstruction of corrupted region is promoted.  

We take corrupted image and predicted edge (trained) which generated by edge generator 
network and taken as prior knowledge as input for G2, and then the completed image output 
by G2 together with uncorrupted original image is input into discriminator D2. By constantly 
comparing and updating the parameters of discriminator, the image inpainting ability of G2 is 
improved. The real image is taken as the input in the discriminator. With massive training, the 
completed image will be more similar to real images. 
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Fig. 4. Face Inpainting Network 

 
The image completion network uses the incomplete color image, i. e.  T�gt = Tgt⨀(1 − M) 

and the edge map as input. The edge map is come from the edge generator network, i.e., 
Ccon = Cgt⨀(1 −M) + Cpred⨀M. The network returns a color image Tpred, with missing 
regions filled in, that has the same resolution as the input image. 

                                                   Tpred = G2(T�gt, Ccon)                                                 (5) 
In image inpainting network, Loss function consists reconstruction loss, adversarial loss, 

perceptual loss, and style loss. These loss factors are used to train GAN for obtaining better 
performance. The adversarial loss is defined as: 

    ℒadv2 = 𝔼𝔼(Tgt，Ccon) log�D2�Tgt，Ccon��+𝔼𝔼 Ccon log[1 − D2�Tpred，Ccon�]       (6) 
Perceptual loss [25] penalizes results that are not perceptually similar to labels by defining 

a distance measure between activation maps of a pre-trained network. The loss defined as:  

                                   ℒprec = 𝔼𝔼[∑ ||ϕi�Tgt�−ϕi�Tpred�||𝟏𝟏
Ni

𝐋𝐋
𝐢𝐢=𝟏𝟏 ]                                          (7) 

Where ϕi is the activation map of the i’th layer of a pretrained network [36]. These 
activation maps are also used to compute style loss [37] which measures the differences 
between covariances of the activation maps. Given feature maps of sizes Cj × Hj × Wj, style 
loss is computed by 

                                        ℒstyle = 𝔼𝔼j[||Gj
ϕ�Tpred� − Gj

ϕ�Tgt�||𝟏𝟏]                                       (8) 
Where Gj

ϕ  is a Cj × Cj  Gram matrix constructed from activation maps ϕj  in style loss.   
Discriminator in face inpainting network, integrated with reconstruction loss, adversarial loss, 
perceptual loss, and style loss, can discriminate the completed image. The total loss function 
is defined as:  

                             ℒG2 = λL1ℒL1 + λadv2ℒadv2 + λpℒperc + λsℒstyle                         (9) 
Where λL1  ,  λadv2 , λpand λs  are regularization parameters. In our experiments, we set 

λL1 = 1 , λadv2 = λp = 0.1 and λs = 250 ,which has been shown to be effective in previous 
work [12].  
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4. The Experimental Results and Analysis 
Our LSK-FNet model is implemented in PyTorch. Its computational hardware mainly includes 
Intel CPU E5 (2.60GHZ) and GTX1080ti GPU. We conduct extensive experiments on high-
quality human face dataset CelebA-HQ [38]. The image size in this dataset is 256*256. All 
the images are split into 28K, 1K and 1K for training, validation and testing respectively. We 
used 12K irregular mask images of 256*256 for training and evaluation. The mask images are 
split into 10K, 1K and 1K for training, validation and testing respectively. We use the Adam 
optimizer [39] with β1= 0 and β2= 0.9 to train our model. In edge generation network, the 
weights of loss function are set to λadv1=1 and λFM=10 respectively. In face inpainting 
network, the weights of the loss function are λL1=1, λadv2 = λp=0.1 and λs=250. 

We use the commonly-used L1 loss, peak signal-to-noise ratio (PSNR), and structural 
similarity (SSIM) as evaluation metrics. As gated convolution applied in irregular corrupted 
images, the algorithm is evaluated on irregular mask. The irregular dataset is grouped into five 
intervals along with the mask region, i.e.,10%-20%, 20%-30%, 30%-40% and 40%-50%, to 
observe image inpainting results of mask in each interval. We compare our method to the 
following five methods. 
 Contextual Attention (CA): Method proposed by Yu et al [15]. 
 Generative Multi-column Convolutional Neural Networks (GMCNN): Method 

proposed by Wang et al [40]. 
 EdgeConnect (EC): Method proposed by Nazcri et al [12]. 
 Pluralistic Image Completion (PIC): Method proposed by Zheng et al [25]. 
 Region Normalization (RN): Method proposed by Yu et al [31]. 

In the LSK-FNet model, the edge knowledge of corrupted images are extracted by edge 
generation network，shown in Fig. 5(c). The prior knowledge generated in the edge generation 
network is integrated into face inpainting network for image inpainting, shown in Fig. 5(c). 
Fig. 5 shows a sample of images which are generated by our model. The restoration effect of 
corrupted face image is determined by the generated edge graph. For example, the eyebrow 
direction and the hair in Fig. 5(d) was restored guided the edge graph in Fig. 5(c). 

 

 
(a) Input image (b) Corrupted image (c) Predict edge (d) Inpainted image 

Fig. 5. Inpainted instance produced by our framework. 

4.1 Quantitative Comparisons 
We give the results of quantitative comparisons in Table 1. The compared models include: 
CA, GMCNN, EC, PIC and RN. The second column is the region of irregular masks at testing 
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time. The statistics are based on random masks with mask ratio 0%-50%. Three commonly 
used metrics are used: L1 loss, PSNR and SSIM. Symbol ↓ represents lower is better. Symbol 
↑ represents higher is better. RN did not provide pre-training model for this dataset, so we 
represented it on the CelebA-HQ dataset according to the code published by the author. PIC 
could produce multiple results, so we selected the one which is closest to the Ground Truth. 
According to the results of the Table 1 the method presented in this paper is superior to the 
other five methods. Compared to the EC, when corrupted area is less than 20%, L1 loss reduce 
by more than 4.3%. When corrupted area is less than 40%, the LSK-FNet model shows its 
superiority. On the whole, the method in this paper is superior to its comparison methods. 
 

Table 1. Proposed framework is compared to other methods on CelebA-HQ. 
 Mask CA GMCNN EC PIC RN Ours 

 
L1↓ 

10% - 20% 0.294 0.290 0.208 0.366 0.335 0.199 

20% - 30% 0.320 0.316 0.245 0.373 0.346 0.235 

30% - 40% 0.313 0.340 0.278 0.400 0.354 0.267 

40% - 50% 0.368 0.364 0.308 0.408 0.359 0.304 

 
PSNR↑ 

10% - 20% 30.141 29.472 33.672 33.948 15.486 34.030 

20% - 30% 25.691 24.937 29.372 29.560 15.290 29.631 

30% - 40% 22.944 22.260 26.683 26.561 15.005 27.027 

40% - 50% 21.003 20.401 24.490 24.382 14.577 24.442 

 
SSIM↑ 

10% - 20% 0.934 0.929 0.960 0.960 0.803 0.963 

20% - 30% 0.873 0.868 0.922 0.922 0.764 0.923 

30% - 40% 0.805 0.805 0.876 0.874 0.710 0.877 

40% - 50% 0.734 0.738 0.822 0.819 0.644 0.819 
 

4.2 Qualitative Comparisons 
As shown in Fig. 6, the restored images of different methods are compared without any post-
processing. The size of the corrupted area increases from top to bottom. Due to the integration 
of gated convolution and RN into our model, it can be seen that our model has the best 
performance in texture consistency near the boundary and color fusion. Besides, our model is 
also good at keeping the structure consistency even better than EC [12]. The images restored 
by CA [15], GMCNN [40] and RN [31] show visual artifacts, unclear edge structure and other 
features especially shown in R5 and R7. When the mask is small (e.g., R1 and R2), the 
completed results of EC [12], PIC [25] and our method are not much different from those of 
the input image, but ours has more detailed edge structure. For inpainting, CA [15], PIC [25], 
employ attention modules to learn contextual information. However, they still generate 
semantically inconsistent structures or textures because of the unreasonable attention scores. 
From Fig. 6, we can intuitively see that the LSK-FNet model restore effect is better in image 
rationality and visual continuity. 
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(a)Original     (b)Input       (c)CA       (d)GMCNN    (e)EC        (f)PIC         (g)RN         (h)Ours 

 
Fig. 6. Qualitative results of different inpainting methods on the CelebA-HQ dataset with irregular 
mask. (Top to bottom) The mask sizes are different: R1-R2(range from 10% to 20%), R3-R4(range 

from 20% to 30%), R5-R6(range from 30% to 40%), for R7-R8(range from 40% to 50%) 
 

Fig. 7 shows the details in the facial image when applied different methods of completion. 
From the enlarged details of images, it can be seen that the completed images would generate 
visual artifacts when applied CA, GMCNN and PIC methods. In addition, these methods may 
generate artifacts or blurry effect on facial components such as the eyes in the first row. From 
the restore of facial details, we can see that the method in our paper is more reasonable in 
detail and texture. 
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(a) Original     (b) Input       (c)CA       (d)GMCNN    (e)EC          (f)PIC        (g)RN           (h) Ours 

Fig. 7. Detail comparison of different image inpainting methods 

4.3 Ablation Study 
LSK-FNet Without Gated Convolution or Region Normalization To verify the 
effectiveness of our framework on image inpainting, firstly we training the model without 
applying Gated Convolution or Region Normalization. The split of images and irregular mask 
on the dataset is same as section 4. To show noticeably better results, we use irregular mask 
to train and test with other conditions unchanged. Note that, image inpainting effect does not 
improve apparently when solely adding gated convolution or RN in the stage of filling the 
missing regions (Results shown in Table 2). 
 

Table 2. Comparison results over CelebA-HQ with irregular mask. Our framework is compared 
with models of applying single gated convolution or RN. The third, fourth and fifth columns indicate 

specifications without gated convolution, without RN and both with gated convolution and RN, 
respectively. 

 Mask × Gated Conv × RN Ours 

L1↓ 

10% - 20% 0.211 0.204 0.199 
20% - 30% 0.260 0.245 0.235 
30% - 40% 0.296 0.281 0.267 
40% - 50% 0.332 0.319 0.304 

PSNR↑ 

10% - 20% 33.961 33.800 34.030 
20% - 30% 29.470 29.376 29.631 
30% - 40% 26.902 26.875 27.027 
40% - 50% 24.331 24.360 24.442 

SSIM↑ 

10% - 20% 0.962 0.961 0.963 
20% - 30% 0.922 0.921 0.923 
30% - 40% 0.075 0.874 0.877 
40% - 50% 0.812 0.813 0.819 

 
From the Table 2, we make a further discussion as follows: (1) Image quantity can be 

improved by using gated convolution or RN, but ineffective for corrupted regions. (2) The 
results are better when we use RN and gated convolution used in network simultaneously. (3) 
The performance on L1 loss do not surpass EC when RN or gated convolution are singly used. 
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However, we achieve significant improvement on performance with RN and gate convolution. 
(4) SSIM is improved no matter applied RN and gate convolution separately or together when 
the corrupted region is relatively small especially less than 20%. 

4.4 Limitations 
Due to the framework proposed in this paper is two-stage, the predicted edge image in the first 
stage has a great impact on the effect of image inpainting in the second stage. When the edge 
generation network fails to produce relevant edge information, the restore effect will be 
imperfect. 

Fig. 8 shows the limitations of this method. It can be seen that the restoration effect of Fig. 
8 (d) has a certain relationship with the edge generation graph of Fig. 8 (c). When the corrupted 
face is a side face or large portion of the face image is missing, the restore effect will be 
imperfect. In the fourth image of R3, because the edge of high-texture region could not be 
described in the edge generation stage, the restored image was asymmetric at the position of 
the glasses. 

 

 
          (a) Input image      (b) Corrupted image     (c) Predicted edge   (d) Inpainted image 

Fig. 8. Limitations of the method 
 

In the future work, we plan to investigate better edge generation network. Effective edge 
prior information will improve the performance of image inpainting. We believe that with an 
improved edge generation system, our model can be extended to very high-resolution 
inpainting. 

5. Conclusion 
In the paper, we proposed a Learnable Structure Knowledge of Fusion Network (LSK-FNet), 
which obtains prior knowledge with edge generation network for image inpainting. The overall 
model is two-stage: edge generation and face inpainting. Firstly, the feature selection function 

R1

R2

R3
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of gated convolution makes the edge information more accurate. Secondly, we utilize the 
generated prior knowledge and corrupted images as input to the face inpainting network which 
is integrated with gated convolution. Moreover, RN is adopted to solve the mean and variance 
shift problems, which has been proved to be effective. Furthermore, Our LSK-FNet also 
improved the global and local structural consistency of images. Extensive qualitative and 
quantitative analyses show that our model achieve more coherent, fine-detailed and sharper 
results compared with some state-of-the-art methods. 
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