• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.032 seconds

Optimal deep machine learning framework for vibration mitigation of seismically-excited uncertain building structures

  • Afshin Bahrami Rad;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.535-549
    • /
    • 2023
  • Deep extreme learning machine (DELM) and multi-verse optimization algorithms (MVO) are hybridized for designing an optimal and adaptive control framework for uncertain buildings. In this approach, first, a robust model predictive control (RMPC) scheme is developed to handle the problem uncertainty. The optimality and adaptivity of the proposed controller are provided by the optimal determination of the tunning weights of the linear programming (LP) cost function for clustered external loads using the MVO. The final control policy is achieved by collecting the clustered data and training them by DELM. The efficiency of the introduced control scheme is demonstrated by the numerical simulation of a ten-story benchmark building subjected to earthquake excitations. The results represent the capability of the proposed framework compared to robust MPC (RMPC), conventional MPC (CMPC), and conventional DELM algorithms in structural motion control.

Restoration of Ghost Imaging in Atmospheric Turbulence Based on Deep Learning

  • Chenzhe Jiang;Banglian Xu;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.655-664
    • /
    • 2023
  • Ghost imaging (GI) technology is developing rapidly, but there are inevitably some limitations such as the influence of atmospheric turbulence. In this paper, we study a ghost imaging system in atmospheric turbulence and use a gamma-gamma (GG) model to simulate the medium to strong range of turbulence distribution. With a compressed sensing (CS) algorithm and generative adversarial network (GAN), the image can be restored well. We analyze the performance of correlation imaging, the influence of atmospheric turbulence and the restoration algorithm's effects. The restored image's peak signal-to-noise ratio (PSNR) and structural similarity index map (SSIM) increased to 21.9 dB and 0.67 dB, respectively. This proves that deep learning (DL) methods can restore a distorted image well, and it has specific significance for computational imaging in noisy and fuzzy environments.

Analysis of Deep Learning-Based Lane Detection Models for Autonomous Driving (자율 주행을 위한 심층 학습 기반 차선 인식 모델 분석)

  • Hyunjong Lee;Euihyun Yoon;Jungmin Ha;Jaekoo Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.225-231
    • /
    • 2023
  • With the recent surge in the autonomous driving market, the significance of lane detection technology has escalated. Lane detection plays a pivotal role in autonomous driving systems by identifying lanes to ensure safe vehicle operation. Traditional lane detection models rely on engineers manually extracting lane features from predefined environments. However, real-world road conditions present diverse challenges, hampering the engineers' ability to extract adaptable lane features, resulting in limited performance. Consequently, recent research has focused on developing deep learning based lane detection models to extract lane features directly from data. In this paper, we classify lane detection models into four categories: cluster-based, curve-based, information propagation-based, and anchor-based methods. We conduct an extensive analysis of the strengths and weaknesses of each approach, evaluate the model's performance on an embedded board, and assess their practicality and effectiveness. Based on our findings, we propose future research directions and potential enhancements.

MicroRNA-Gene Association Prediction Method using Deep Learning Models

  • Seung-Won Yoon;In-Woo Hwang;Kyu-Chul Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.294-299
    • /
    • 2023
  • Micro ribonucleic acids (miRNAs) can regulate the protein expression levels of genes in the human body and have recently been reported to be closely related to the cause of disease. Determining the genes related to miRNAs will aid in understanding the mechanisms underlying complex miRNAs. However, the identification of miRNA-related genes through wet experiments (in vivo, traditional methods are time- and cost-consuming). To overcome these problems, recent studies have investigated the prediction of miRNA relevance using deep learning models. This study presents a method for predicting the relationships between miRNAs and genes. First, we reconstruct a negative dataset using the proposed method. We then extracted the feature using an autoencoder, after which the feature vector was concatenated with the original data. Thereafter, the concatenated data were used to train a long short-term memory model. Our model exhibited an area under the curve of 0.9609, outperforming previously reported models trained using the same dataset.

Deep Learning-Based Artificial Intelligence for Mammography

  • Jung Hyun Yoon;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1225-1239
    • /
    • 2021
  • During the past decade, researchers have investigated the use of computer-aided mammography interpretation. With the application of deep learning technology, artificial intelligence (AI)-based algorithms for mammography have shown promising results in the quantitative assessment of parenchymal density, detection and diagnosis of breast cancer, and prediction of breast cancer risk, enabling more precise patient management. AI-based algorithms may also enhance the efficiency of the interpretation workflow by reducing both the workload and interpretation time. However, more in-depth investigation is required to conclusively prove the effectiveness of AI-based algorithms. This review article discusses how AI algorithms can be applied to mammography interpretation as well as the current challenges in its implementation in real-world practice.

Single Logarithmic Amplification and Deep Learning-based Fixed-threshold On-off Keying Detection for Free-space Optical Communication

  • Qian-Wen Jing;Yan-Qing Hong
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.239-245
    • /
    • 2024
  • This paper proposes single logarithmic amplification (single-LA) and deep learning (DL)-based fixed-threshold on-off keying (OOK) detection for free-space optical (FSO) communication. Multilevel LAs (MLAs) can be used to mitigate intensity fluctuations in the received OOK signal by their nonlinear gain characteristics; however, it is ineffective in the case of high scintillation, owing to degradation of the OOK signal's extinction ratio. Therefore, a DL technique is applied to realize effective scintillation compensation in single-LA applications. Fully connected (FC) networks and fully connected neural networks (FCNN), which have nonlinear modeling characteristics, are deployed in this work. The performance of the proposed method is evaluated through simulations under various scintillation effects. Simulation results show that the proposed method outperforms the conventional adaptive-threshold-decision, single-LA-based, MLA-based, FC-based, and FCNN-based OOK detection techniques.

A study on the auto encoder-based anomaly detection technique for pipeline inspection (관로 조사를 위한 오토 인코더 기반 이상 탐지기법에 관한 연구)

  • Gwantae Kim;Junewon Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.83-93
    • /
    • 2024
  • In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.

Deep Learning-Based Defect Detection in Cu-Cu Bonding Processes

  • DaBin Na;JiMin Gu;JiMin Park;YunSeok Song;JiHun Moon;Sangyul Ha;SangJeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2024
  • Cu-Cu bonding, one of the key technologies in advanced packaging, enhances semiconductor chip performance, miniaturization, and energy efficiency by facilitating rapid data transfer and low power consumption. However, the quality of the interface bonding can significantly impact overall bond quality, necessitating strategies to quickly detect and classify in-process defects. This study presents a methodology for detecting defects in wafer junction areas from Scanning Acoustic Microscopy images using a ResNet-50 based deep learning model. Additionally, the use of the defect map is proposed to rapidly inspect and categorize defects occurring during the Cu-Cu bonding process, thereby improving yield and productivity in semiconductor manufacturing.

  • PDF

Methodology for Apartment Space Arrangement Based on Deep Reinforcement Learning

  • Cheng Yun Chi;Se Won Lee
    • Architectural research
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • This study introduces a deep reinforcement learning (DRL)-based methodology for optimizing apartment space arrangements, addressing the limitations of human capability in evaluating all potential spatial configurations. Leveraging computational power, the methodology facilitates the autonomous exploration and evaluation of innovative layout options, considering architectural principles, legal standards, and client re-quirements. Through comprehensive simulation tests across various apartment types, the research demonstrates the DRL approach's effec-tiveness in generating efficient spatial arrangements that align with current design trends and meet predefined performance objectives. The comparative analysis of AI-generated layouts with those designed by professionals validates the methodology's applicability and potential in enhancing architectural design practices by offering novel, optimized spatial configuration solutions.

LSTM-based Early Fire Detection System using Small Amount Data

  • Seonhwa Kim;Kwangjae Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.110-116
    • /
    • 2024
  • Despite the continuous advancement of science and technology, fire accidents continue to occur without decreasing over time, so there is a constant need for a system that can accurately detect fires at an early stage. However, because most existing fire detection systems detect fire in the early stage of combustion when smoke is generated, rapid fire prevention actions may be delayed. Therefore we propose an early fire detection system that can perform early fire detection at a reasonable cost using LSTM, a deep learning model based on multi-gas sensors with high selectivity in the early stage of decomposition rather than the smoke generation stage. This system combines multiple gas sensors to achieve faster detection speeds than traditional sensors. In addition, through window sliding techniques and model light-weighting, the false alarm rate is low while maintaining the same high accuracy as existing deep learning. This shows that the proposed fire early detection system is a meaningful research in the disaster and engineering fields.

  • PDF