• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.03 seconds

Evaluation of Adult Lung CT Image for Ultra-Low-Dose CT Using Deep Learning Based Reconstruction

  • JO, Jun-Ho;MIN, Hyo-June;JEON, Kwang-Ho;KIM, Yu-Jin;LEE, Sang-Hyeok;KIM, Mi-Sung;JEON, Pil-Hyun;KIM, Daehong;BAEK, Cheol-Ha;LEE, Hakjae
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • Although CT has an advantage in describing the three-dimensional anatomical structure of the human body, it also has a disadvantage in that high doses are exposed to the patient. Recently, a deep learning-based image reconstruction method has been used to reduce patient dose. The purpose of this study is to analyze the dose reduction and image quality improvement of deep learning-based reconstruction (DLR) on the adult's chest CT examination. Adult lung phantom was used for image acquisition and analysis. Lung phantom was scanned at ultra-low-dose (ULD), low-dose (LD), and standard dose (SD) modes, and images were reconstructed using FBP (Filtered back projection), IR (Iterative reconstruction), DLR (Deep learning reconstruction) algorithms. Image quality variations with respect to varying imaging doses were evaluated using noise and SNR. At ULD mode, the noise of the DLR image was reduced by 62.42% compared to the FBP image, and at SD mode, the SNR of the DLR image was increased by 159.60% compared to the SNR of the FBP image. Based on this study, it is anticipated that the DLR will not only substantially reduce the chest CT dose but also drastic improvement of the image quality.

Microalgae Detection Using a Deep Learning Object Detection Algorithm, YOLOv3 (딥러닝 사물 인식 알고리즘(YOLOv3)을 이용한 미세조류 인식 연구)

  • Park, Jungsu;Baek, Jiwon;You, Kwangtae;Nam, Seung Won;Kim, Jongrack
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.275-285
    • /
    • 2021
  • Algal bloom is an important issue in maintaining the safety of the drinking water supply system. Fast detection and classification of algae images are essential for the management of algal blooms. Conventional visual identification using a microscope is a labor-intensive and time-consuming method that often requires several hours to several days in order to obtain analysis results from field water samples. In recent decades, various deep learning algorithms have been developed and widely used in object detection studies. YOLO is a state-of-the-art deep learning algorithm. In this study the third version of the YOLO algorithm, namely, YOLOv3, was used to develop an algae image detection model. YOLOv3 is one of the most representative one-stage object detection algorithms with faster inference time, which is an important benefit of YOLO. A total of 1,114 algae images for 30 genera collected by microscope were used to develop the YOLOv3 algae image detection model. The algae images were divided into four groups with five, 10, 20, and 30 genera for training and testing the model. The mean average precision (mAP) was 81, 70, 52, and 41 for data sets with five, 10, 20, and 30 genera, respectively. The precision was higher than 0.8 for all four image groups. These results show the practical applicability of the deep learning algorithm, YOLOv3, for algae image detection.

Deep Learning-based Real-Time Super-Resolution Architecture Design (경량화된 딥러닝 구조를 이용한 실시간 초고해상도 영상 생성 기술)

  • Ahn, Saehyun;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.167-174
    • /
    • 2021
  • Recently, deep learning technology is widely used in various computer vision applications, such as object recognition, classification, and image generation. In particular, the deep learning-based super-resolution has been gaining significant performance improvement. Fast super-resolution convolutional neural network (FSRCNN) is a well-known model as a deep learning-based super-resolution algorithm that output image is generated by a deconvolutional layer. In this paper, we propose an FPGA-based convolutional neural networks accelerator that considers parallel computing efficiency. In addition, the proposed method proposes Optimal-FSRCNN, which is modified the structure of FSRCNN. The number of multipliers is compressed by 3.47 times compared to FSRCNN. Moreover, PSNR has similar performance to FSRCNN. We developed a real-time image processing technology that implements on FPGA.

Deep Learning Music genre automatic classification voting system using Softmax (소프트맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템)

  • Bae, June;Kim, Jangyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • Research that implements the classification process through Deep Learning algorithm, one of the outstanding human abilities, includes a unimodal model, a multi-modal model, and a multi-modal method using music videos. In this study, the results were better by suggesting a system to analyze each song's spectrum into short samples and vote for the results. Among Deep Learning algorithms, CNN showed superior performance in the category of music genre compared to RNN, and improved performance when CNN and RNN were applied together. The system of voting for each CNN result by Deep Learning a short sample of music showed better results than the previous model and the model with Softmax layer added to the model performed best. The need for the explosive growth of digital media and the automatic classification of music genres in numerous streaming services is increasing. Future research will need to reduce the proportion of undifferentiated songs and develop algorithms for the last category classification of undivided songs.

Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology (인공지능을 이용한 3D 콘텐츠 기술 동향 및 향후 전망)

  • Lee, S.W.;Hwang, B.W.;Lim, S.J.;Yoon, S.U.;Kim, T.J.;Kim, K.N.;Kim, D.H;Park, C.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Recent technological advances in three-dimensional (3D) sensing devices and machine learning such as deep leaning has enabled data-driven 3D applications. Research on artificial intelligence has developed for the past few years and 3D deep learning has been introduced. This is the result of the availability of high-quality big data, increases in computing power, and development of new algorithms; before the introduction of 3D deep leaning, the main targets for deep learning were one-dimensional (1D) audio files and two-dimensional (2D) images. The research field of deep leaning has extended from discriminative models such as classification/segmentation/reconstruction models to generative models such as those including style transfer and generation of non-existing data. Unlike 2D learning, it is not easy to acquire 3D learning data. Although low-cost 3D data acquisition sensors have become increasingly popular owing to advances in 3D vision technology, the generation/acquisition of 3D data is still very difficult. Even if 3D data can be acquired, post-processing remains a significant problem. Moreover, it is not easy to directly apply existing network models such as convolution networks owing to the various ways in which 3D data is represented. In this paper, we summarize technological trends in AI-based 3D content generation.

Bolt-Loosening Detection using Vision-Based Deep Learning Algorithm and Image Processing Method (영상기반 딥러닝 및 이미지 프로세싱 기법을 이용한 볼트풀림 손상 검출)

  • Lee, So-Young;Huynh, Thanh-Canh;Park, Jae-Hyung;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.265-272
    • /
    • 2019
  • In this paper, a vision-based deep learning algorithm and image processing method are proposed to detect bolt-loosening in steel connections. To achieve this objective, the following approaches are implemented. First, a bolt-loosening detection method that includes regional convolutional neural network(RCNN)-based deep learning algorithm and Hough line transform(HLT)-based image processing algorithm are designed. The RCNN-based deep learning algorithm is developed to identify and crop bolts in a connection image. The HLT-based image processing algorithm is designed to estimate the bolt angles from the cropped bolt images. Then, the proposed vision-based method is evaluated for verifying bolt-loosening detection in a lab-scale girder connection. The accuracy of the RCNN-based bolt detector and HLT-based bolt angle estimator are examined with respect to various perspective distortions.

Lost and Found Registration and Inquiry Management System for User-dependent Interface using Automatic Image Classification and Ranking System based on Deep Learning (딥 러닝 기반 이미지 자동 분류 및 랭킹 시스템을 이용한 사용자 편의 중심의 유실물 등록 및 조회 관리 시스템)

  • Jeong, Hamin;Yoo, Hyunsoo;You, Taewoo;Kim, Yunuk;Ahn, Yonghak
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.19-25
    • /
    • 2018
  • In this paper, we propose an user-centered integrated lost-goods management system through a ranking system based on weight and a hierarchical image classification system based on Deep Learning. The proposed system consists of a hierarchical image classification system that automatically classifies images through deep learning, and a ranking system modules that listing the registered lost property information on the system in order of weight for the convenience of the query process.In the process of registration, various information such as category classification, brand, and related tags are automatically recognized by only one photograph, thereby minimizing the hassle of users in the registration process. And through the ranking systems, it has increased the efficiency of searching for lost items by exposing users frequently visited lost items on top. As a result of the experiment, the proposed system allows users to use the system easily and conveniently.

  • PDF

Suggestions for the Development of RegTech Based Ontology and Deep Learning Technology to Interpret Capital Market Regulations (레그테크 기반의 자본시장 규제 해석 온톨로지 및 딥러닝 기술 개발을 위한 제언)

  • Choi, Seung Uk;Kwon, Oh Byung
    • The Journal of Information Systems
    • /
    • v.30 no.1
    • /
    • pp.65-84
    • /
    • 2021
  • Purpose Based on the development of artificial intelligence and big data technologies, the RegTech has been emerged to reduce regulatory costs and to enable efficient supervision by regulatory bodies. The word RegTech is a combination of regulation and technology, which means using the technological methods to facilitate the implementation of regulations and to make efficient surveillance and supervision of regulations. The purpose of this study is to describe the recent adoption of RegTech and to provide basic examples of applying RegTech to capital market regulations. Design/methodology/approach English-based ontology and deep learning technologies are quite developed in practice, and it will not be difficult to expand it to European or Latin American languages that are grammatically similar to English. However, it is not easy to use it in most Asian languages such as Korean, which have different grammatical rules. In addition, in the early stages of adoption, companies, financial institutions and regulators will not be familiar with this machine-based reporting system. There is a need to establish an ecosystem which facilitates the adoption of RegTech by consulting and supporting the stakeholders. In this paper, we provide a simple example that shows a procedure of applying RegTech to recognize and interpret Korean language-based capital market regulations. Specifically, we present the process of converting sentences in regulations into a meta-language through the morpheme analyses. We next conduct deep learning analyses to determine whether a regulatory sentence exists in each regulatory paragraph. Findings This study illustrates the applicability of RegTech-based ontology and deep learning technologies in Korean-based capital market regulations.

Performance Analysis of Bitcoin Investment Strategy using Deep Learning (딥러닝을 이용한 비트코인 투자전략의 성과 분석)

  • Kim, Sun Woong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.249-258
    • /
    • 2021
  • Bitcoin prices have been soaring recently as investors flock to cryptocurrency exchanges. The purpose of this study is to predict the Bitcoin price using a deep learning model and analyze whether Bitcoin is profitable through investment strategy. LSTM is utilized as Bitcoin prediction model with nonlinearity and long-term memory and the profitability of MA cross-over strategy with predicted prices as input variables is analyzed. Investment performance of Bitcoin strategy using LSTM forecast prices from 2013 to 2021 showed return improvement of 5.5% and 46% more than market price MA cross-over strategy and benchmark Buy & Hold strategy, respectively. The results of this study, which expanded to recent data, supported the inefficiency of the cryptocurrency market, as did previous studies, and showed the feasibility of using the deep learning model for Bitcoin investors. In future research, it is necessary to develop optimal prediction models and improve the profitability of Bitcoin investment strategies through performance comparison of various deep learning models.

A Review on Deep Learning-based Image Outpainting (딥러닝 기반 이미지 아웃페인팅 기술의 현황 및 최신 동향)

  • Kim, Kyunghun;Kong, Kyeongbo;Kang, Suk-ju
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.61-69
    • /
    • 2021
  • Image outpainting is a very interesting problem in that it can continuously fill the outside of a given image by considering the context of the image. There are two main challenges in this work. The first is to maintain the spatial consistency of the content of the generated area and the original input. The second is to generate high quality large image with a small amount of adjacent information. Existing image outpainting methods have difficulties such as generating inconsistent, blurry, and repetitive pixels. However, thanks to the recent development of deep learning technology, deep learning-based algorithms that show high performance compared to existing traditional techniques have been introduced. Deep learning-based image outpainting has been actively researched with various networks proposed until now. In this paper, we would like to introduce the latest technology and trends in the field of outpainting. This study compared recent techniques by analyzing representative networks among deep learning-based outpainting algorithms and showed experimental results through various data sets and comparison methods.