• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.028 seconds

A Through-focus Scanning Optical Microscopy Dimensional Measurement Method based on a Deep-learning Regression Model (딥 러닝 회귀 모델 기반의 TSOM 계측)

  • Jeong, Jun Hee;Cho, Joong Hwee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.108-113
    • /
    • 2022
  • The deep-learning-based measurement method with the through-focus scanning optical microscopy (TSOM) estimated the size of the object using the classification. However, the measurement performance of the method depends on the number of subdivided classes, and it is practically difficult to prepare data at regular intervals for training each class. We propose an approach to measure the size of an object in the TSOM image using the deep-learning regression model instead of using classification. We attempted our proposed method to estimate the top critical dimension (TCD) of through silicon via (TSV) holes with 2461 TSOM images and the results were compared with the existing method. As a result of our experiment, the average measurement error of our method was within 30 nm (1σ) which is 1/13.5 of the sampling distance of the applied microscope. Measurement errors decreased by 31% compared to the classification result. This result proves that the proposed method is more effective and practical than the classification method.

Development of a Deep Learning Model for Detecting Fake Reviews Using Author Linguistic Features (작성자 언어적 특성 기반 가짜 리뷰 탐지 딥러닝 모델 개발)

  • Shin, Dong Hoon;Shin, Woo Sik;Kim, Hee Woong
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.01-23
    • /
    • 2022
  • Purpose This study aims to propose a deep learning-based fake review detection model by combining authors' linguistic features and semantic information of reviews. Design/methodology/approach This study used 358,071 review data of Yelp to develop fake review detection model. We employed linguistic inquiry and word count (LIWC) to extract 24 linguistic features of authors. Then we used deep learning architectures such as multilayer perceptron(MLP), long short-term memory(LSTM) and transformer to learn linguistic features and semantic features for fake review detection. Findings The results of our study show that detection models using both linguistic and semantic features outperformed other models using single type of features. In addition, this study confirmed that differences in linguistic features between fake reviewer and authentic reviewer are significant. That is, we found that linguistic features complement semantic information of reviews and further enhance predictive power of fake detection model.

Detecting A Crypto-mining Malware By Deep Learning Analysis

  • Aljehani, Shahad;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.172-180
    • /
    • 2022
  • Crypto-mining malware (known as crypto-jacking) is a novel cyber-attack that exploits the victim's computing resources such as CPU and GPU to generate illegal cryptocurrency. The attacker get benefit from crypto-jacking by using someone else's mining hardware and their electricity power. This research focused on the possibility of detecting the potential crypto-mining malware in an environment by analyzing both static and dynamic approaches of deep learning. The Program Executable (PE) files were utilized with deep learning methods which are Long Short-Term Memory (LSTM). The finding revealed that LTSM outperformed both SVM and RF in static and dynamic approaches with percentage of 98% and 96%, respectively. Future studies will focus on detecting the malware using larger dataset to have more accurate and realistic results.

Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches

  • Al Shehri, Waleed;Jannah, Najlaa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.343-351
    • /
    • 2022
  • A brain tumor forms when some tissue becomes old or damaged but does not die when it must, preventing new tissue from being born. Manually finding such masses in the brain by analyzing MRI images is challenging and time-consuming for experts. In this study, our main objective is to detect the brain's tumorous part, allowing rapid diagnosis to treat the primary disease instantly. With image processing techniques and deep learning prediction algorithms, our research makes a system capable of finding a tumor in MRI images of a brain automatically and accurately. Our tumor segmentation adopts the U-Net deep learning segmentation on the standard MICCAI BRATS 2018 dataset, which has MRI images with different modalities. The proposed approach was evaluated and achieved Dice Coefficients of 0.9795, 0.9855, 0.9793, and 0.9950 across several test datasets. These results show that the proposed system achieves excellent segmentation of tumors in MRIs using deep learning techniques such as the U-Net algorithm.

A Study on Deep Learning Model-based Object Classification for Big Data Environment

  • Kim, Jeong-Sig;Kim, Jinhong
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • Recently, conceptual information model is changing fast, and these changes are coming about as a result of individual tendency, social cultural, new circumstances and societal shifts within big data environment. Despite the data is growing more and more, now is the time to commit ourselves to the development of renewable, invaluable information of social/live commerce. Because we have problems with various insoluble data, we propose about deep learning prediction model-based object classification in social commerce of big data environment. Accordingly, it is an increased need of social commerce platform capable of handling high volumes of multiple items by users. Consequently, responding to rapid changes in users is a very significant by deep learning. Namely, promptly meet the needs of the times, and a widespread growth in big data environment with the goal of realizing in this paper.

A Deep Learning Model for Predicting User Personality Using Social Media Profile Images

  • Kanchana, T.S.;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.265-271
    • /
    • 2022
  • Social media is a form of communication based on the internet to share information through content and images. Their choice of profile images and type of image they post can be closely connected to their personality. The user posted images are designated as personality traits. The objective of this study is to predict five factor model personality dimensions from profile images by using deep learning and neural networks. Developed a deep learning framework-based neural network for personality prediction. The personality types of the Big Five Factor model can be quantified from user profile images. To measure the effectiveness, proposed two models using convolution Neural Networks to classify each personality of the user. Done performance analysis among two different models for efficiently predict personality traits from profile image. It was found that VGG-69 CNN models are best performing models for producing the classification accuracy of 91% to predict user personality traits.

A Deep Learning Algorithm for Fusing Action Recognition and Psychological Characteristics of Wrestlers

  • Yuan Yuan;Yuan Yuan;Jun Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.754-774
    • /
    • 2023
  • Wrestling is one of the popular events for modern sports. It is difficult to quantitatively describe a wrestling game between athletes. And deep learning can help wrestling training by human recognition techniques. Based on the characteristics of latest wrestling competition rules and human recognition technologies, a set of wrestling competition video analysis and retrieval system is proposed. This system uses a combination of literature method, observation method, interview method and mathematical statistics to conduct statistics, analysis, research and discussion on the application of technology. Combined the system application in targeted movement technology. A deep learning-based facial recognition psychological feature analysis method for the training and competition of classical wrestling after the implementation of the new rules is proposed. The experimental results of this paper showed that the proportion of natural emotions of male and female wrestlers was about 50%, indicating that the wrestler's mentality was relatively stable before the intense physical confrontation, and the test of the system also proved the stability of the system.

A Study on the Prediction Model of the Total Quantity of the Wall Finishing Structure Member Based on BIM Object Information Using Deep Learning (딥러닝을 활용한 BIM 객체정보기반의 벽마감 구조틀 부재 수량 예측모델에 관한 연구)

  • Park, Do-Yoon;Yun, Seok-Heon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.123-124
    • /
    • 2022
  • The work of modeling and calculating the quantity of detailed parts requires a lot of time and effort. However, The information of BIM Model can be used to predict the amount of uncreated parts with Deep Learning. In this study, Deep Learning was used to predict the total length of the member of frame that was not created. As a result, it was confirmed that the error rate was inside or outside 3%. And predicting other components in this way will increase productivity in Architectural field.

  • PDF

Speech Emotion Recognition Based on Deep Networks: A Review (딥네트워크 기반 음성 감정인식 기술 동향)

  • Mustaqeem, Mustaqeem;Kwon, Soonil
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.331-334
    • /
    • 2021
  • In the latest eras, there has been a significant amount of development and research is done on the usage of Deep Learning (DL) for speech emotion recognition (SER) based on Convolutional Neural Network (CNN). These techniques are usually focused on utilizing CNN for an application associated with emotion recognition. Moreover, numerous mechanisms are deliberated that is based on deep learning, meanwhile, it's important in the SER-based human-computer interaction (HCI) applications. Associating with other methods, the methods created by DL are presenting quite motivating results in many fields including automatic speech recognition. Hence, it appeals to a lot of studies and investigations. In this article, a review with evaluations is illustrated on the improvements that happened in the SER domain though likewise arguing the existing studies that are existence SER based on DL and CNN methods.

High Resolution Fringe Pattern Generation Based on Deep Learning (딥러닝을 이용한 고해상도 광학적 프린지 패턴의 생성)

  • Choi, Jang-Hwan;Kang, Ji-Won;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.630-631
    • /
    • 2021
  • In this paper, we propose a high-resolution fringe pattern generation technique using deep learning networks. Generating a hologram using a computer requires a very large amount of computation. Therefore, in order to replace this, it was shown that it can be replaced through deep learning, but there was a limitation in the resolution of the output fringe pattern. To improve this, we propose an algorithm for generating a high-resolution fringe pattern.

  • PDF