References
- B. H. Menze et al., "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging, Vol. 34, No. 10, 2015, pp. 1993-2024. https://doi.org/10.1109/TMI.2014.2377694
- U. A. Nayak, M. Balachandra, K. N. Manjunath, and R. Kurady, "Validation of Segmented Brain Tumor from MRI Images Using 3D Printing", Asian Pacific Journal of Cancer Prevention: APJCP, Vol. 22, No. 2, 2021, p. 523, https://doi.org/10.31557%2FAPJCP.2021.22.2.523 https://doi.org/10.31557%2FAPJCP.2021.22.2.523
- M. S. Felson, "Brain Cancer", WebMD LLC, 9 Oct 2019. [Online]. Available: https://www.webmd.com/cancer/brain-cancer/brain-cancer
- M. Soltaninejad, G. Yang, T. Lambrou, N. Allinson, T. L. Jones, T. R. Barrick, F. A. Howe, and X. Ye, "Automated Brain Tumour Detection and Segmentation Using Superpixel-Based Extremely Randomized Trees in FLAIR MRI", International Journal of Computer Assisted Radiology and Surgery, Vol. 12, 2017, pp. 183-203, https://doi.org/10.1007/s11548-016-1483-3
- Z. U. Rehman, S. S. Naqvi, T. M. Khan, M. A. Khan, and T. Bashir, "Fully Automated Multi-Parametric Brain Tumour Segmentation Using Superpixel Based Classification", Expert Systems with Applications, Vol. 118, 2019, pp. 598-613, https://doi.org/10.1016/j.eswa.2018.10.040
- M. A. Khan, "Brain Tumor Detection and Classification: A Framework of Marker-based Watershed Algorithm and Multilevel Priority Features Selection," Microscopy Research and Technique, Vol. 82, 2019, pp. 909-922, https://doi.org/10.1002/jemt.23238
- P. G. Rajan and C. Sundar, "Brain Tumor Detection and Segmentation by Intensity Adjustment", Journal of Medical Systems, Vol. 43, 2019, pp. 1-13, https://doi.org/10.1007/s10916-019-1368-4
- H. Byale, G. M. Lingaraju and S. Shivasubramaniyan, "Automatic Segmentation and Classification of Brain Tumor Using Machine Learning Techniques," International Journal of Applied Engineering Research, Vol. 13, 2018, pp. 11686-11692
- N. Nooshin and K. Miroslav, "Brain Tumors Detection and Segmentation in MR Images: Gabor Wavelet vs. Statistical Features", Computers & Electrical Engineering, Vol. 45, 2017, pp. 286-301, https://doi.org/10.1016/j.compeleceng.2015.02.007
- "Multimodal Brain Tumor Segmentation Challenge 2018", Section for Biomedical Image Analysis (SBIA): Perelman School of Medicine, 16 Sep 2018. [Online]. Available: https://www.med.upenn.edu/sbia/brats2018/data.html.
- J. Jordan, "An Overview of Semantic Image Segmentation", Machine Learning Blogs, 21 May 2018. [Online]. Available: https://www.jeremyjordan.me/semantic-segmentation/
- M. P. Starmans, S. R. van der Voort, J. M. C. Tovar, J. F. Veenland, S. Klein, and W. J. Niessen, "Radiomics: Data Mining Using Quantitative Medical Image Features", Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 429-456, Academic Press.
- R.A. Zeineldin, M. E. Karar, J. Coburger, C. R. Wirtz, and O. Burgert, DeepSeg: Deep Neural Network Framework for Automatic Brain Tumor Segmentation Using Magnetic Resonance FLAIR Images", International Journal of Computer Assisted Radiology and Surgery, Vol. 15, No. 6, 2020, pp.909-920, https://doi.org/10.1007/s11548-020-02186-z
- O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional Networks for Biomedical Image Segmentation", International Conference on Medical Image Computing And Computer-Assisted Intervention, pp. 234-241, Springer, Cham.
- M. A. Naser, and M. J. Deen, "Brain Tumor Segmentation and Grading Of Lower-Grade Glioma Using Deep Learning in MRI Images", Computers in Biology and Medicine, Vol. 121, 2020, p. 103758, https://doi.org/10.1016/j.compbiomed.2020.103758
- C. G. B. Yogananda et al, "A Fully Automated Deep Learning Network for Brain Tumor Segmentation", Tomography, Vol. 6, 2020, pp. 186-193, https://doi.org/10.18383/j.tom.2019.00026