• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.035 seconds

Image Recognition based on Adaptive Deep Learning (적응적 딥러닝 학습 기반 영상 인식)

  • Kim, Jin-Woo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.113-117
    • /
    • 2018
  • Human emotions are revealed by various factors. Words, actions, facial expressions, attire and so on. But people know how to hide their feelings. So we can not easily guess its sensitivity using one factor. We decided to pay attention to behaviors and facial expressions in order to solve these problems. Behavior and facial expression can not be easily concealed without constant effort and training. In this paper, we propose an algorithm to estimate human emotion through combination of two results by gradually learning human behavior and facial expression with little data through the deep learning method. Through this algorithm, we can more comprehensively grasp human emotions.

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.

Interworking technology of neural network and data among deep learning frameworks

  • Park, Jaebok;Yoo, Seungmok;Yoon, Seokjin;Lee, Kyunghee;Cho, Changsik
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.760-770
    • /
    • 2019
  • Based on the growing demand for neural network technologies, various neural network inference engines are being developed. However, each inference engine has its own neural network storage format. There is a growing demand for standardization to solve this problem. This study presents interworking techniques for ensuring the compatibility of neural networks and data among the various deep learning frameworks. The proposed technique standardizes the graphic expression grammar and learning data storage format using the Neural Network Exchange Format (NNEF) of Khronos. The proposed converter includes a lexical, syntax, and parser. This NNEF parser converts neural network information into a parsing tree and quantizes data. To validate the proposed system, we verified that MNIST is immediately executed by importing AlexNet's neural network and learned data. Therefore, this study contributes an efficient design technique for a converter that can execute a neural network and learned data in various frameworks regardless of the storage format of each framework.

Vision-based Predictive Model on Particulates via Deep Learning

  • Kim, SungHwan;Kim, Songi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2107-2115
    • /
    • 2018
  • Over recent years, high-concentration of particulate matters (e.g., a.k.a. fine dust) in South Korea has increasingly evoked considerable concerns about public health. It is intractable to track and report $PM_{10}$ measurements to the public on a real-time basis. Even worse, such records merely amount to averaged particulate concentration at particular regions. Under this circumstance, people are prone to being at risk at rapidly dispersing air pollution. To address this challenge, we attempt to build a predictive model via deep learning to the concentration of particulates ($PM_{10}$). The proposed method learns a binary decision rule on the basis of video sequences to predict whether the level of particulates ($PM_{10}$) in real time is harmful (>$80{\mu}g/m^3$) or not. To our best knowledge, no vision-based $PM_{10}$ measurement method has been proposed in atmosphere research. In experimental studies, the proposed model is found to outperform other existing algorithms in virtue of convolutional deep learning networks. In this regard, we suppose this vision based-predictive model has lucrative potentials to handle with upcoming challenges related to particulate measurement.

Prediction of Jamming Techniques by Using LSTM (LSTM을 이용한 재밍 기법 예측)

  • Lee, Gyeong-Hoon;Jo, Jeil;Park, Cheong Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.278-286
    • /
    • 2019
  • Conventional methods for selecting jamming techniques in electronic warfare are based on libraries in which a list of jamming techniques for radar signals is recorded. However, the choice of jamming techniques by the library is limited when modified signals are received. In this paper, we propose a method to predict the jamming technique for radar signals by using deep learning methods. Long short-term memory(LSTM) is a deep running method which is effective for learning the time dependent relationship in sequential data. In order to determine the optimal LSTM model structure for jamming technique prediction, we test the learning parameter values that should be selected, such as the number of LSTM layers, the number of fully-connected layers, optimization methods, the size of the mini batch, and dropout ratio. Experimental results demonstrate the competent performance of the LSTM model in predicting the jamming technique for radar signals.

Automated Ulna and Radius Segmentation model based on Deep Learning on DEXA (DEXA에서 딥러닝 기반의 척골 및 요골 자동 분할 모델)

  • Kim, Young Jae;Park, Sung Jin;Kim, Kyung Rae;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1407-1416
    • /
    • 2018
  • The purpose of this study was to train a model for the ulna and radius bone segmentation based on Convolutional Neural Networks and to verify the segmentation model. The data consisted of 840 training data, 210 tuning data, and 200 verification data. The learning model for the ulna and radius bone bwas based on U-Net (19 convolutional and 8 maximum pooling) and trained with 8 batch sizes, 0.0001 learning rate, and 200 epochs. As a result, the average sensitivity of the training data was 0.998, the specificity was 0.972, the accuracy was 0.979, and the Dice's similarity coefficient was 0.968. In the validation data, the average sensitivity was 0.961, specificity was 0.978, accuracy was 0.972, and Dice's similarity coefficient was 0.961. The performance of deep convolutional neural network based models for the segmentation was good for ulna and radius bone.

A Study of Kernel Characteristics of CNN Deep Learning for Effective Fire Detection Based on Video (영상기반의 화재 검출에 효과적인 CNN 심층학습의 커널 특성에 대한 연구)

  • Son, Geum-Young;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1257-1262
    • /
    • 2018
  • In this paper, a deep learning method is proposed to detect the fire effectively by using video of surveillance camera. Based on AlexNet model, classification performance is compared according to kernel size and stride of convolution layer. Dataset for learning and interfering are classified into two classes such as normal and fire. Normal images include clouds, and foggy images, and fire images include smoke and flames images, respectively. As results of simulations, it is shown that the larger kernel size and smaller stride shows better performance.

A hidden anti-jamming method based on deep reinforcement learning

  • Wang, Yifan;Liu, Xin;Wang, Mei;Yu, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3444-3457
    • /
    • 2021
  • In the field of anti-jamming based on dynamic spectrum, most methods try to improve the ability to avoid jamming and seldom consider whether the jammer would perceive the user's signal. Although these existing methods work in some anti-jamming scenarios, their long-term performance may be depressed when intelligent jammers can learn user's waveform or decision information from user's historical activities. Hence, we proposed a hidden anti-jamming method to address this problem by reducing the jammer's sense probability. In the proposed method, the action correlation between the user and the jammer is used to evaluate the hiding effect of the user's actions. And a deep reinforcement learning framework, including specific action correlation calculation and iteration learning algorithm, is designed to maximize the hiding and communication performance of the user synchronously. The simulation result shows that the algorithm proposed reduces the jammer's sense probability significantly and improves the user's anti-jamming performance slightly compared to the existing algorithms based on jamming avoidance.

A Study on the Detection Method of Lane Based on Deep Learning for Autonomous Driving (자율주행을 위한 딥러닝 기반의 차선 검출 방법에 관한 연구)

  • Park, Seung-Jun;Han, Sang-Yong;Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.979-987
    • /
    • 2020
  • This study used the Deep Learning models used in previous studies, we selected the basic model. The selected model was selected as ZFNet among ZFNet, Googlenet and ResNet, and the object was detected using a ZFNet based FRCNN. In order to reduce the detection error rate of FRCNN, location of four types of objects detected inside the image was designed by SVM classifier and location-based filtering was applied. As simulation results, it showed similar performance to the lane marking classification method with conventional 경계 detection, with an average accuracy of about 88.8%. In addition, studies using the Linear-parabolic Model showed a processing speed of 165.65ms with a minimum resolution of 600 × 800, but in this study, the resolution was treated at about 33ms with an input resolution image of 1280 × 960, so it was possible to classify lane marking at a faster rate than the previous study by CNN-based End to End method.

Empirical Analysis of a Fine-Tuned Deep Convolutional Model in Classifying and Detecting Malaria Parasites from Blood Smears

  • Montalbo, Francis Jesmar P.;Alon, Alvin S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.147-165
    • /
    • 2021
  • In this work, we empirically evaluated the efficiency of the recent EfficientNetB0 model to identify and diagnose malaria parasite infections in blood smears. The dataset used was collected and classified by relevant experts from the Lister Hill National Centre for Biomedical Communications (LHNCBC). We prepared our samples with minimal image transformations as opposed to others, as we focused more on the feature extraction capability of the EfficientNetB0 baseline model. We applied transfer learning to increase the initial feature sets and reduced the training time to train our model. We then fine-tuned it to work with our proposed layers and re-trained the entire model to learn from our prepared dataset. The highest overall accuracy attained from our evaluated results was 94.70% from fifty epochs and followed by 94.68% within just ten. Additional visualization and analysis using the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm visualized how effectively our fine-tuned EfficientNetB0 detected infections better than other recent state-of-the-art DCNN models. This study, therefore, concludes that when fine-tuned, the recent EfficientNetB0 will generate highly accurate deep learning solutions for the identification of malaria parasites in blood smears without the need for stringent pre-processing, optimization, or data augmentation of images.