• Title/Summary/Keyword: decomposition theorem

Search Result 60, Processing Time 0.03 seconds

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

A Realization of Multidimensional Digital Filters by using the Triangular Decompostition of the Coefficient Matrix (계수행렬의 삼각분해에 의한 다차원 디지털 필터의 실현)

  • 김태수;김명기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.2
    • /
    • pp.95-107
    • /
    • 1989
  • This paper proposes a realization method of multidimensional digital filters that has high modularity, regularity and parallelism enjoying the attributes for efficient VLSI implementation. The method shows that multidimensional transfer functions can be treated as two-dimensional transfer functions modifying the decomposition method of multidimensional transfer functions proposed by Venetsanopoulos etal, and then be displayed by multiplications and additions of one-dimensional transfer functions by applying the griangular decomposition theorem to the coefficient matrices of the two-dimensional transfer functions.

  • PDF

Projection spectral analysis: A unified approach to PCA and ICA with incremental learning

  • Kang, Hoon;Lee, Hyun Su
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.634-642
    • /
    • 2018
  • Projection spectral analysis is investigated and refined in this paper, in order to unify principal component analysis and independent component analysis. Singular value decomposition and spectral theorems are applied to nonsymmetric correlation or covariance matrices with multiplicities or singularities, where projections and nilpotents are obtained. Therefore, the suggested approach not only utilizes a sum-product of orthogonal projection operators and real distinct eigenvalues for squared singular values, but also reduces the dimension of correlation or covariance if there are multiple zero eigenvalues. Moreover, incremental learning strategies of projection spectral analysis are also suggested to improve the performance.

NUMERICAL SOLUTIONS OF NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS BY USING MADM AND VIM

  • Abed, Ayoob M.;Younis, Muhammed F.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.189-201
    • /
    • 2022
  • The aim of the current work is to investigate the numerical study of a nonlinear Volterra-Fredholm integro-differential equation with initial conditions. Our approximation techniques modified adomian decomposition method (MADM) and variational iteration method (VIM) are based on the product integration methods in conjunction with iterative schemes. The convergence of the proposed methods have been proved. We conclude the paper with numerical examples to illustrate the effectiveness of our methods.

DECOMPOSITION OF THE RANDOM VARIABLE WHOSE DISTRIBUTION IS THE RIESZ-NÁGY-TAKÁCS DISTRIBUTION

  • Baek, In Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.421-426
    • /
    • 2013
  • We give a series of discrete random variables which converges to a random variable whose distribution function is the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs (RNT) distribution. We show this using the correspondence theorem that if the moments coincide then their corresponding distribution functions also coincide.

Paranormed I-convergent Double Sequence Spaces Associated with Multiplier Sequences

  • Tripathy, Binod Chandra;Sen, Mausumi
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.321-332
    • /
    • 2014
  • In this article we introduce different types of multiplier I-convergent double sequence spaces. We study their different algebraic and topological properties like solidity, symmetricity, completeness etc. The decomposition theorem is established and some inclusion results are proved.

SHEAF-THEORETIC APPROACH TO THE CONVOLUTION ALGEBRAS ON QUIVER VARIETIES

  • Kwon, Namhee
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.1-15
    • /
    • 2013
  • In this paper, we study a sheaf-theoretic analysis of the convolution algebra on quiver varieties. As by-products, we reinterpret the results of H. Nakajima. We also produce a refined form of the BBD decomposition theorem for quiver varieties. Finally, we study a construction of highest weight modules through constructible functions.

ON KATO`S DECOMPOSITION THEOREM

  • YONG BIN CHOI;YOUNG MIN HAN;IN SUNG HWANG
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.317-325
    • /
    • 1994
  • Suppose X is a complex Banach space and write B(X) for the Banach algebra of bounded linear operators on X, X* for the dual space of X, and T*$\in$ B(X*) for the dual operator of T. For T $\in$ B(X) write a(T) = dim T$^{-1}$ (0) and $\beta$(T) = codim T(X).(omitted)

  • PDF

The Properties on Fuzzy Submachines of a Fuzzy Finite State Machine

  • Hwang, Seok-Yoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.749-753
    • /
    • 2003
  • In this paper we introduce the concepts on retrievability, separability and connectedness of fuzzy submachines, which generalize those of crisp submachines. And also we generalize crisp primary submachines to those with fuzziness, from which we obtain the decomposition theorem of fuzzy submachines.