• Title/Summary/Keyword: deceleration behavior

Search Result 48, Processing Time 0.028 seconds

Effect of the Main Structure Stiffness on the Frontal Collision Behavior (차체 추요 부재의 강성이 정면 충돌 거동에 미치는 영향)

  • Kim, Chon-Wook;Han, Byoung-Kee;Kim, Jong-Chan;Jung, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.234-241
    • /
    • 2002
  • In this study, the car crash analysis that simulates the crushing behavior of car forestructure during a frontal impact is carried out. The analysis model for front impact of a car consists of the lumped mass and the spring model. The characteristics value of masses and springs is obtained from the static analysis of a target car. The deceleration-time curve obtained from the simulation are compared with NCAP test data from the NHTSA. They show a good agreement with frontal crash test data. The deceleration-time curve of passenger compartment is classified into 3 stages; beginning stage, middle stage, and last stage. And the behavior of masses at each stage is explained. The effect of stiffness variation on deceleration of passenger compartment is resolved. The maximum loaded peak-time of torque box and dash is the main factor to control the passenger compartment's maximum deceleration.

Greenhouse Gas Emission Patterns at Intersections by Drivers (교차로에서 운전자별 온실가스 발생 경향)

  • Lee, Yoon-Seok;Yoo, Hye-Min;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.147-154
    • /
    • 2013
  • PURPOSES: To analyze the specific factors of drivers behaviors that amount of cause the greenhouse gas emissions per vehicle. METHODS: Drivers behaviors at intersections are analyzed on the conditions of acceleration and deceleration. RESULTS : First, it is resulted greenhouse gas emissions per vehicle is produced more at intersections than at the main lines of highway. Second, it is resulted that the average speed, the average acceleration rate and the maximum speed are three major factors to produce greenhouse gas per vehicle in acceleration sections. Third, it is resulted that rapid deceleration 20m before entering intersections is the major factor to produce greenhouse gas per vehicle in deceleration sections. CONCLUSIONS: At intersections, sudden acceleration and deceleration is not good for greenhouse gas emissions. Thus, and the average speed, the average acceleration rate and the maximum speed are the chosen as factors to be controlled for drivers' behavior to reduce vehicles' greenhouse gas at intersections.

Effect of the Acceleration and Deceleration on the Dynamic Characteristics of an Air Stage (에어 스테이지의 동적 특성에 미치는 가속도 및 감속도의 영향)

  • Park, Sang Joon;Lee, Jae Hyeok;Park, Sang-Shin;Kim, Gyu Ha
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.39-46
    • /
    • 2020
  • Air stages are usually applied to precision engineering in sectors such as the semiconductor industry owing to their excellent performance and extremely low friction. Since the productivity of a semiconductor depends on the acceleration and deceleration performance of the air stage, many attempts have been made to improve the speed of the stage. Even during sudden start or stop sequences, the stage should maintain an air film to avoid direct contact between pad and the rail. The purpose of this study is to quantitatively predict the dynamic behavior of the air stage when acceleration and deceleration occur. The air stage is composed of two parts; the stage and the guide-way. The stage transports objects to the guideway, which is supported by an externally pressurized gas bearing. In this study, we use COMSOL Multiphysics to calculate the pressure of the air film between the stage and the guide-way and solve the two-degree-of-freedom equations of motion of the stage. Based on the specified velocity conditions such as the acceleration time and the maximum velocity of stage, we calculate the eccentricity and tilting angle of the stage. The result shows that the stiffness and damping of the gas bearing have non-linear characteristics. Hence, we should consider the operating conditions in the design process of an air stage system because the dynamic behavior of the stage becomes unstable depending on the maximum velocity and the acceleration time.

GPS Data Collection and Application for the Analysis of Car Following Behavior (차량의 추종행태 분석을 위한 GPS 자료의 수집과 적용)

  • Woo, Yong-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.11-21
    • /
    • 2000
  • The travel behavior should be analysed microscopically for the traffic management of urban street. The car following theory which found out the correlation between the lead and the following vehicles is being widely used as basic data in many fields. As the vehicle position and its speed information can be received by GPS, this technique is recently applying to the various fields. For the case study the travel data were collected with two vehicles equipped with GPS receiver. The moving distance was calculated by the collected location data every 2 seconds and the speed variation was checked. And this study analysed and compared the acceleration and deceleration speed between the lead and the following vehicle. Finally, Regression model about the relationship between the acceleration and deceleration speed and the acceleration and deceleration distance was constructed. This model could be helpful for the road design and the regulation for the safe traffic management.

  • PDF

A Study on Driver Behavior and Dilemma Zone during Yellow Interval at Signalized Intersections (신호교차로 황색현시에서의 운전자 형태 및 딜레마 구간 연구방안)

  • 이승환;이성호;박주남
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.7-16
    • /
    • 2003
  • Objective of this research is to analyze drivers' behaviors at signalized intersection during yellow interval. For this, deceleration rate of stopping, PRT(Perception-Response Time), and the relationship between dilemma zone and deceleration rate of stopping were surveyed at two signalized intersections located at urban area(Songtan and Suwon) and local area(Yongin) As a result, the deceleration rate of stopping at signalized intersections and a range of dilemma zone were estimated. It was found that the deceleration rate of stopping and PRT were 1.6m/sec$^2$ and 1.27sec, respectively. These values are bigger than ITE's values which have been used in our country. Accordingly, it is considered that these values should be used as a new design criteria for the traffic signal control.

A study on the EHL film behavior measurement for the multigrade lubricant (멀티그레이드 윤활유의 탄성유체윤활 유막 측정 연구)

  • Jang Siyoul;Kim Seungjae;Kim Jaehong;Bae Daeyoon;Yoo SungChoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • It is important to decide the minimum film thickness and viscosity variations of a multigrade lubricant in the contact surface under the high pressure conditions. By carrying out acceleration, deceleration, and various sliding-rolling ratio movement between two contact bodies, it is experimented that film formation variations in the contact surface are captured with multigrade lubricants in order to exactly investigate the variations of film formations. Optical interference images are continuously captured with high resolution CCD camera during the captured period of acceleration, deceleration. The friction forces between the contacting bodies are also measured simultaneously with the film formation.

  • PDF

A Study on Improvement of Design Method for Freeway Diverging Areas (고속도로 분류부 설계기법 개선 연구)

  • Park, Jae-Beom;Lee, Seung-Jun;Gang, Jeong-Gyu;Kim, Il-Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.1 s.94
    • /
    • pp.23-35
    • /
    • 2007
  • Freeway diverging areas are very vulnerable to traffic accidents due to abrupt vehicle speed changes and geometric changes. Therefore, in designing diverging areas, much attention should be Paid to safety The Present design criteria about freeway diverging areas regulate transition sections for lane changes, deceleration lanes, transition corves for direction changes. and other similar items. However, the design criteria were often violated in implementation because of ambiguities in the criteria. This study aims at clarifying and improving the present design criteria for freeway diverging areas. For this, field survey data and traffic accident data for diverging areas were analyzed.

A Study of Dynamic Behavior in Braking States of Tilting Train (틸팅 차량의 곡선 주로 주행 시 감속에 따른 동적 특성 연구)

  • Lee, J.H.;Park, T.W.;Kim, Y.K.;Kim, S.W.;Hwang, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.151-154
    • /
    • 2005
  • Tilting train improves a traveling velocity through giving a tilt the car-body without ride comfort deterioration In curve. Dynamic behavior in deceleration will show quite another feature in constant velocity, In this study, we see through the dynamic behavior due to a variation of braking force in Korean Tilting Train. Hence we compose of 3D dynamic model, as well as we check upon the property in service braking condition and unique braking condition with a fault system. This study has the meaning with reference data of developing Korean Tilting Train test traveling.

  • PDF

A study on dynamic behavior in tractive and braking states of tilting train (틸팅차량의 견인 및 제동 상황시의 동적 특성에 관한 연구)

  • Park, J.Y.;Jung, I.H.;Lee, J.H.;Park, T.W.;Kim, S.W.;Kim, Y.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1107-1111
    • /
    • 2004
  • Tilting train improves a traveling velocity through giving a tilt the car-body without ride comfort deterioration in curve. Dynamic behavior in acceleration or deceleration will show quite another feature in constant velocity. In this study, we see through the dynamic behavior due to a variation of tractive force and braking force in Korean Tilting Train. Hence we compose of 3D dynamic model, as well as we check upon the property in service tractive condition and unique tractive condition with a fault motor. Besides we check upon the property in service braking condition and unique braking condition with a fault system. This study has the meaning with reference data of developing Korean Tilting Train test traveling.

  • PDF