• 제목/요약/키워드: ddRT-PCR

검색결과 31건 처리시간 0.035초

Reverse Transcription Droplet Digital PCR을 활용한 Tomato Spotted Wilt Virus 검출 및 정량 (Application of Reverse Transcription Droplet Digital PCR for Detection and Quantification of Tomato Spotted Wilt Virus)

  • 이효정;박기범;한연수;정래동
    • 식물병연구
    • /
    • 제27권3호
    • /
    • pp.120-127
    • /
    • 2021
  • 식물 바이러스는 작물 수확량에 상당한 손실을 일으키고 작물 생산을 지속적으로 위협하여 세계 식량 안보에 심각한 위협이 된다. 그 중 tomato spotted wilt virus (TSWV)는 주로 원예작물을 감염시키는 가장 위협적인 식물 바이러스로 넓은 기주 범위를 가진다. Reverse-transcription quantitative real-time PCR (RT-qPCR)은 TSWV의 민감한 검출을 위해 널리 사용되고 있지만 표준화의 어려움으로 인해 유용성이 감소한다. 따라서 본 연구에서는 TSWV 검출을 위해 민감하고 정확한 reverse transcription droplet digital polymerase chain reaction (RT-ddPCR)을 확립하였다. TSWV 검출에 대한 RT-qPCR 및 RT-ddPCR의 민감도를 비교하였고, TSWV에 대한 RT-ddPCR의 특이성 분석은 고추에서 주로 발생하는 바이러스 및 음성 대조군에서 특이성을 확인한 결과 증폭되지 않았다. RT-ddPCR 및 RTqPCR에 의해 측정된 TSWV의 선형회귀곡선은 모두 높은 선형성을 나타냈지만, RT-ddPCR 분석이 10배 이상 더 민감하고 더 낮은 TSWV의 copy 수를 검출할 수 있었다. 종합적으로, 우리의 연구 결과는 RT-ddPCR이 TSWV 검출에 대해 높은 민감도와 특이성을 제공하고 낮은 농도의 현장 시료에서 TSWV 검출하는 데 적합하다는 것을 보여준다.

Detection and Quantification of Apple Stem Grooving Virus in Micropropagated Apple Plantlets Using Reverse-Transcription Droplet Digital PCR

  • Kim, Sung-Woong;Lee, Hyo-Jeong;Cho, Kang Hee;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.417-422
    • /
    • 2022
  • Apple stem grooving virus (ASGV) is a destructive viral pathogen of pome fruit trees that causes significant losses to fruit production worldwide. Obtaining ASGV-free propagation materials is essential to reduce economic losses, and accurate and sensitive detection methods to screen ASGV-free plantlets during in vitro propagation are urgently necessary. In this study, ASGV was sensitively and accurately quantified from in vitro propagated apple plantlets using a reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assay. The optimized RT-ddPCR assay was specific to other apple viruses, and was at least 10-times more sensitive than RT-real-time quantitative PCR assay. Furthermore, the optimized RT-ddPCR assay was validated for the detection and quantification of ASGV using micropropagated apple plantlet samples. This RT-ddPCR assay can be utilized for the accurate quantitative detection of ASGV infection in ASGV-free certification programs, and can thus contribute to the production of ASGV-free apple trees.

Comparison of Digital PCR and Quantitative PCR with Various SARS-CoV-2 Primer-Probe Sets

  • Park, Changwoo;Lee, Jina;Hassan, Zohaib ul;Ku, Keun Bon;Kim, Seong-Jun;Kim, Hong Gi;Park, Edmond Changkyun;Park, Gun-Soo;Park, Daeui;Baek, Seung-Hwa;Park, Dongju;Lee, Jihye;Jeon, Sangeun;Kim, Seungtaek;Lee, Chang-Seop;Yoo, Hee Min;Kim, Seil
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권3호
    • /
    • pp.358-367
    • /
    • 2021
  • The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) as an international health emergency. Current diagnostic tests are based on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method, which is the gold standard test that involves the amplification of viral RNA. However, the RT-qPCR assay has limitations in terms of sensitivity and quantification. In this study, we tested both qPCR and droplet digital PCR (ddPCR) to detect low amounts of viral RNA. The cycle threshold (CT) of the viral RNA by RT-PCR significantly varied according to the sequences of the primer and probe sets with in vitro transcript (IVT) RNA or viral RNA as templates, whereas the copy number of the viral RNA by ddPCR was effectively quantified with IVT RNA, cultured viral RNA, and RNA from clinical samples. Furthermore, the clinical samples were assayed via both methods, and the sensitivity of the ddPCR was determined to be equal to or more than that of the RT-qPCR. However, the ddPCR assay is more suitable for determining the copy number of reference materials. These findings suggest that the qPCR assay with the ddPCR defined reference materials could be used as a highly sensitive and compatible diagnostic method for viral RNA detection.

Characterization of Pathogenesis and Plant Defence-related Genes Against Potato virus X infection empolying Potato X virus expresssin vector

  • Park, Mi-Ri;Kwon, Sun-Jung;Kim, Kook-Hyung
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.74.1-74
    • /
    • 2003
  • Differential display (DD) of mRNA is a technique in which mRNA species expressed by a cell population are reverse transcribed and then amplified by many separate polymerase chain reactions (PCR). Using DD-RT-PCR we obtained many genes that expressed differentially in healthy and PVX-infected Nicotiana benthamima, using total RNAs extracted from healthy and PVX-infected N. benthamiana plants. Three hundred and twenty-five DNA fragments isolated from DD-RT-PCR were cloned and sequenced for further characterization. Several host genes including SKPI-like protein, heat shock transcription factor and Avr9/Cf-9 rapidly elicited protein were selected to obtain full-length open reading frame and to characterize their potential involvement in virus disease development and/or host's defense against virus infection employing PVX-based expression vector. Transcrips from wild-type and clones containing each selected gene were inoculated onto N. benthamiana Levels of virus replication were confirmedby RT-PCR and RNA blot analysis, Expression profiles and potential role(s) of selected genes upon PVX infection will be discussed.

  • PDF

Identification of a Novel PGE2 Regulated Gene in SNU1 Gastric Cancer Cell

  • Park, Min-Seon;Kim, Hong-Tae;Min, Byung-Re;Kimm, Ku-Chan;Nam, Myeong-Jin
    • BMB Reports
    • /
    • 제33권2호
    • /
    • pp.184-187
    • /
    • 2000
  • Prostaglandin $E_2$ ($PGE_2$) plays an important role in the regulation of various gastric functions, and the growth-inhibitory activities on tumor cells are studied in vitro and in vivo. Although the mechanisms have attracted many researchers in the past decade, the molecular mechanisms of cell cycle arrest, or induction of apoptosis by $PGE_2$, is unclear. We investigated the effects of $PGE_2$ on the growth of the human gastric carcinoma cell line SNU1 and genes that are regulated by $PGE_2$ and isolated them using differential display RT-PCR (DD RT-PCR). FACS analysis suggested that SNU1 cells were arrested at the G1 phase by $PGE_2$ treatment. This growth inhibitory effect was in a time- and dose-dependent manner. Treatment of SNU1 cells with $10\;{\mu}g/ml$ $PGE_2$, followed by DD RT-PCR analysis, revealed differently expressed bands patterns from the control. Among the differently expressed clones, we found an unidentified cDNA clone (HGP-27) overexpressed in $PGE_2$-treated cells. The full-length cDNA of HGP-27 was isolated using RACE, which consisted of a 30-nt 5'-noncoding region, a 891-nt ORF encoding the 296 amino acid protein, and a 738-nt 3'-noncoding region including a poly(a) signal. This gene was localized on the short arm of chromosome number 11. Using the Motif Finder program, a myb-DNA binding repeat signature was detected on the ORF region. The COOH-terminal half was shown to have similarity with the $NH_3$-terminal domain of thioredoxin (Trx). This relation between HGP-27 and Trx implied a potential role for HGP-27 in modulating the DNA binding function of a transcription factor, myb.

  • PDF

A Trial of Screening of Genes Involved in Odontoblasts Differentiation from Human Dental Pulp Stem Cells

  • Park, Yoon-Kyu;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • 제37권4호
    • /
    • pp.167-173
    • /
    • 2012
  • This study investigated the genes involved in the differentiation of odontoblasts derived from human dental pulp stem cells (hDPSCs). hDPSCs isolated from human tooth pulp were validated by fluorescence activated cell sorting (FACS). After odontogenic induction, hDPSCs were analyzed investigated by Alizaline red-S staining, ALP assay, ALP staining and RT-PCR. Differential display-polymerase chain reaction (DD-PCR) was performed to screen differentially expressed genes involved in the differentiation of hDPSCs. By FACS analysis, the stem cell markers CD24 and CD44 were found to be highly expressed in hDPSCs. When hDPSCs were treated with agents such as ${\beta}$-glycerophosphate (${\beta}$-GP) and ascorbic acid (AA), nodule formation was exhibited within six weeks. The ALP activity of hDPSCs was found to elevate over time, with a detectable up-regulation at 14 days after odontogenic induction. RT-PCR analysis revealed that dentin sialophosphoprotein (DSPP) and osteocalcin (OC) expression had increased in a time-dependent manner in the induction culture. Through the use of DD-PCR, several genes were differentially detected following the odontogenic induction. These results suggest that these genes may possibly be linked to a variety of cellular process during odontogenesis. Furthermore, the characterization of these regulated genes during odontogenic induction will likely provide valuable new insights into the functions of odontoblasts.

Identification of Inducible Genes during Mast Cell Differentiation

  • Lee Eunkyung;Kang Sang-gu;Chang Hyeun Wook
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.232-237
    • /
    • 2005
  • Mast cells play an important role in allergic inflammation by releasing their bioactive mediators. The function of mast cells is enhanced by stimulation because of the induction of specific genes and their products. While many inducible genes have been elucidated, we speculated that a significant number of genes remain to be identified. Thus, we applied differential display (dd) PCR to establish a profile of the induced genes in bone marrow-derived mast cells (BMMCs) after they were co-cultured with 3T3 fibroblasts. To date, 150 cDNA fragments from the connective-type mast cells (CTMCs) were amplified. Among them, thirty cDNA fragments were reamplified for cloning and sequencing. The ddPCR strategy revealed that serine proteases were the most abundant genes among the sequenced clones induced during the maturation. Additionally, unknown genes from the co-culture of BMMCs with 3T3 fibroblasts were identified. We confirmed their induction in the CTMCs by Northern blot analysis and RT-PCR. Characterization of these induced genes during the maturation processes will provide insight into the functions of mast cells.

Differential display RT-PCR 기법을 이용한 돼지 등심조직의 품종 간 발현차이 유전자의 연구

  • 김남국;조중호;임종현;방경정;송민진;박범영;김언현;이창수
    • 한국축산식품학회:학술대회논문집
    • /
    • 한국축산식품학회 2005년도 정기총회 및 제35차 춘계 학술 발표대회
    • /
    • pp.239-242
    • /
    • 2005
  • 본 연구는 성장 속도 및 서로 다른 육질 특성을 지닌 돼지 품종을 이용하여, 육질 및 성장에 관련된 유전자원을 확보하고, 이를 이용한 유전 육종의 기초 자료를 제공하기 위하여 수행하였다. Differential display (DD) RT-PCR 기법을 통해 돼지 품종 간 발현 차이를 보이는 유전자인 NADH dehydrogenase 1과 ATPase 6를 동정하였다. 동정된 유전자의 발현량 분석을 위한 RT-PCR 결과, 각 유전자의 발현량이 재래돼지에서 외래 품종 (랜드레이 스 및 요크셔)에 비해 2배 이상 높음을 확인 할 수 있었다 (p<0.01). 이러한 발현차이 유전자를 이용하여 육질과의 관련성 연구 및 유전자의 기능에 대한 연구가 지속되어야 할 것이다.

  • PDF

정상, 낭종 및 법랑아세포종 세포에서의 유전자 발현 차이 분석 (ANALYSIS OF DIFFERENTIAL GENE EXPRESSION IN NORMAL, CYST AND AMELOBLASTOMA CELLS)

  • 양철희;백병주;양연미;김재곤
    • 대한소아치과학회지
    • /
    • 제32권1호
    • /
    • pp.75-88
    • /
    • 2005
  • 법랑아세포종은 1868년에 처음 보고된 이래 명칭, 발생기전, 분류 그리고 치료 방법 등에 관하여 수 많은 논란이 있어 왔는데 이는 법랑세포종이 양성종양임에도 불구하고 종양자체의 진행이 파괴적이고, 외과적 처치를 한 후에도 재발이 잘되며, 흔하지는 않지만 악성종양과 유사하게 전이를 보이는 등 독특한 특성을 지니고 있기 때문이다. 정상세포와 암 세포 간에 차이를 보이는 유전자 혹은 정상세포에서 변형이 일어날 때 특이적으로 발현하는 유전의 분리 및 분석하는 것은 암세포의 생성과정을 이해하는데 있어서 중요한 열쇠를 제공할 수 있다. 이에 본 연구는 RNA differential display 방법 중 재연성과 반복성이 개선된 Ordered differential display(ODD)RT-PCR과 보다 개선된 $GeneFishing^{TM}$기술을 이용하여 악성과 양성종양 사이의 유전자 발현의 차이를 조사하고, 특이 유전자의 profile을 확보하고자 하였다. $GeneFishing^{TM}$기술과 RT-PCR을 수행한 결과 nasopharyngeal carcinoma gene을 제외한 9개의 유전자는 악성에서 특이적으로 발현되는 것을 확인하였다. 따라서 $GeneFishing^{TM}$을 이용하면 각 시료간의 mRNA 상에서 발현차이를 보이는 DEG를 비교 분석하면 암관련 유전자, 항생제 태성 유전자, 그리고 분화 관련 유전자들에 대한 연구가 용이하게 수행할 수 있을 것으로 생각된다.

  • PDF