• Title/Summary/Keyword: dc microgrid

Search Result 86, Processing Time 0.018 seconds

A Bidirectional Dual Buck-Boost Voltage Balancer with Direct Coupling Based on a Burst-Mode Control Scheme for Low-Voltage Bipolar-Type DC Microgrids

  • Liu, Chuang;Zhu, Dawei;Zhang, Jia;Liu, Haiyang;Cai, Guowei
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1609-1618
    • /
    • 2015
  • DC microgrids are considered as prospective systems because of their easy connection of distributed energy resources (DERs) and electric vehicles (EVs), reduction of conversion loss between dc output sources and loads, lack of reactive power issues, etc. These features make them very suitable for future industrial and commercial buildings' power systems. In addition, the bipolar-type dc system structure is more popular, because it provides two voltage levels for different power converters and loads. To keep voltage balanced in such a dc system, a bidirectional dual buck-boost voltage balancer with direct coupling is introduced based on P-cell and N-cell concepts. This results in greatly enhanced system reliability thanks to no shoot-through problems and lower switching losses with the help of power MOSFETs. In order to increase system efficiency and reliability, a novel burst-mode control strategy is proposed for the dual buck-boost voltage balancer. The basic operating principle, the current relations, and a small-signal model of the voltage balancer are analyzed under the burst-mode control scheme in detail. Finally, simulation experiments are performed and a laboratory unit with a 5kW unbalanced ability is constructed to verify the viability of the bidirectional dual buck-boost voltage balancer under the proposed burst-mode control scheme in low-voltage bipolar-type dc microgrids.

Analysis for Pole to Ground Fault Detection in Ungrounded LVDC Distribution Network (비접지 LVDC 배전망의 지락고장 검출을 위한 분석)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.119-124
    • /
    • 2018
  • Recently, LVDC distribution network and DC microgrid with many advantages are being built. However, this LVDC distribution is an IT grounded or ungrounded system, and it is difficult to detect a ground fault because the fault current is small. In this paper, we propose a signal injection method for unipolar LVDC distribution network to detect ground fault in ungrounded LVDC distribution, and various analyzes were performed for ground fault detection.

Analysis and Design of Quadruple-Active-Bridge Converter Employing Passive Power Decoupling Capability (수동 전력 비동조화가 가능한 QAB 컨버터의 분석과 설계에 관한 연구)

  • Yun, Chang-Woo;Lee, Jun-Young;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.157-164
    • /
    • 2022
  • This study proposes an enhanced quadruple-Active-Bridge (QAB) converter that can solve power coupling problems. By adopting a multiple winding transformer, the equivalent circuit of a conventional QAB converter has power couplings between arbitrary output ports. This coupling is an unintended power relationship that complicates the regulation of output voltage of the multiple ports. The proposed converter can carry out power decoupling by changing the arrangement of the coupling inductor. Power transfer equations for the proposed converter and its operating principles are analyzed in detail. The power coupling caused by the transformer's leakage inductance is verified by using a proposed coupling factor that presents the relationship between inductance ratio and coupling power. In addition, the decoupling power control performance of the proposed converter is verified by simulation and a 3 kW prototype converter.

Suggestion of a Hybrid Method for Estimating Photovoltaic Power Generation (전력 IT 시스템에서 복합방식의 태양광 발전량 예측 방법 제안)

  • Ju, Woo-Sun;Jang, Min-Seok;Lee, Yon-Sik;Bae, Seok-Chan;Kim, Weon-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.782-785
    • /
    • 2011
  • Needs for MG(Microgrid) development are increasing all over the world as a solution to the problems including the depletion problem of energy resources, the growing demand for electric power and the climatic and environmental change. Especially Photovoltaic power is one of the most general renewable energy resources. However there is a problem of the uniformity of power quality because the power generated from solar light is very sensitive to climate fluctuation (variation of insolation and duration of sunshine, etc). As a solution to the above problem, ESS(Energy Storage System) is considered generally, but it has some limitations. To solve this problem this paper suggests a hybrid estimation method of photovoltaic power generation according to two climatic factors, i.e. insolation and sunshine. This result seems to help design the appropriate capacity of ESS and estimate the proper switching time between DC and AC power in the premises power system and thus maintain the uniformity of power quality.

  • PDF

Construct of Electronics Load System using the Multi-level Interiver Converter (다중전류레벨 인터리버 컨버터를 이용한 전자부하 시스템 구성)

  • Moon, Hyeon-Cheol;Song, Kwang-Cheol;Lee, Chang-Ho;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.989-998
    • /
    • 2020
  • Recently, demands for large-capacity electronic loads are increasing in various industries such as a reliability test for the performance of a DC power supply device or a dummy-load for improving the stability of an independent microgrid to be actively built in the future. The electronic load required in these various fields requires an operation such as a continuously variable resistance load while minimizing the switching harmonic component generated in the electric load current in order to reduce the influence of interference from the load peripheral device. Electronic loads require a system that minimizes switching current ripple for load control. Therefore, in this paper, we propose a three-level module converter structure to reduce the current ripple of an electronic load, and a multilevel interleaved power converter topology to reduce the current ripple. The validity of the proposed electronic load, 3-level 6 interleaver converter, was verified by simulation and experiment. In addition, the user's convenience was provided by applying the emotional command curve interface method.

Implementation of Prosumer Management System for Small MicroGrid (소규모 마이크로그리드에서 프로슈머관리시스템의 구현)

  • Lim, Su-Youn;Lee, Tae-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.590-596
    • /
    • 2020
  • In the island areas where system connection with the commercial power grid is difficult, it is quite important to find a method to efficiently manage energy produced with independent microgrids. In this paper, a prosumer management system for P2P power transaction was realized through the testing the power meter and the response rate of the collected data for the power produced in the small-scale microgrids in which hybrid models of solar power and wind power were implemented. The power network of the microgrid prosumer was composed of mesh structure and the P2P power transaction was tested through the power meter and DC power transmitter in the off-grid sites which were independently constructed in three places. The measurement values of the power meter showed significant results of voltage (average): 380V + 0.9V, current (average): + 0.01A, power: 1000W (-1W) with an error range within ±1%. Stabilization of the server was also confirmed with the response rate of 0.32 sec. for the main screen, 2.61 sec. for the cumulative power generation, and 0.11 sec for the power transaction through the transmission of 50 data in real time. Therefore, the proposed system was validated as a P2P power transaction system that can be used as an independent network without transmitted by Korea Electric Power Corporation (KEPCO).