• Title/Summary/Keyword: dc bias property

Search Result 25, Processing Time 0.024 seconds

Adhesion of Cu on Polycarbonate with the Condition of Surface Modification and DC-Bias Sputtering Deposition (폴리카보네이트에서의 표면개질 조건과 DC-Bias Sputtering 증착에 따른 Cu 밀착성)

  • 배길상;엄준선;이인선;김상호;고영배;김동원
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The enhancement of adhesion for Cu film on polycarbonate (PC) surface with the $Ar/O_2$ gas plasma treatment and dc-bias sputtering was studied. The plasma treatment with this reactive mixture changes the chemical property of PC surface into hydrophllic one, which is shown by the variation of contact angle with surface modification. The micro surface roughness that also gives the high adhesive environment is increased by the $Ar/O_2$ gas plasma treatment. These results were observed distinctly from the atomic force microscopy (AFM). The negative substrate dc-bias effect for the Cu adhesion on PC was also investifated. Accelerated $Ar^{+}$ lons in sheath area of anode bombard the bare surface of PC during initial stage of dc bias sputtering. PC substrate. therefore, has severe roughen and hydrophilic surface due to the physical etching process with more activated functional group. As dc-bias sputtering process proceeds, morphology of Cu film shows better step coverage and dense layer. The results of peel test show the evidence of superiority of bias sputtering for the adhesion between metal Cu and PC.C.

Growth Characteristics of the ZnO Nanowires Prepared by Hydrothermal Synthesis Technique with Applied DC Bias (DC 바이어스를 인가하여 수열합성법으로 성장시킨 ZnO 나노와이어의 성장 특성)

  • Lim, Young-Taek;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.317-321
    • /
    • 2014
  • Hydrothermal synthesis technique could be carried out for growth of ZnO nanowires at relatively low process temperature, and it could be freely utilized with various substrates for fabrication process of functional electronic devices. However, it has also a demerit of relatively slow growth characteristics of the resulting ZnO nanowires. In this paper, an external DC bias of positive and negative 0.5 [V] was applied in the hydrothermal synthesis process for 2~8 [h] to prepare ZnO nanowires on a seed layer of AZO with high electrical conductivity. Growth characteristics of the synthesized ZnO nanowires were analyzed by FE-SEM. Material property of the grown ZnO nanowires was examined by PL analysis. The ZnO nanowires grown with positive bias revealed distinctively enhanced growth characteristics, and they showed a typical material property of ZnO.

Improvement Study on Vertical Growth of Carbon Nanotubes and their Field Emission Properties at ICPCVD (유도결합형 플라즈마 화학기상증착법에서 탄소나노튜브의 수직성장과 전계방출 특성 향상 연구)

  • 김광식;류호진;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.713-719
    • /
    • 2002
  • In this study, the vertically well-aligned CNTs were synthesized by DC bias-assisted inductively coupled plasma hot-filament chemical vapor deposition (ICPHFCVD) using radio-frequence plasma of high density and that CNTs were vertically grown on Ni(300 )/Cr(200 )-deposited glass substrates at 58$0^{\circ}C$. This system(ICPHFCVD) added to tungsten filament in order to get thermal decompound and DC bias in order to vertically grow to general Inductively Coupled Plasma CVD. The grown CNTs by ICPHFCVD were developed to higher graphitization and fewer field emission properties than those by general ICPCVD. In this system, DC bias was effect of vortical alignment to growing CNTs. The measured turn-on fields of field emission property by general ICPCVD and DC bias-assisted ICPHFCVD were 5 V/${\mu}{\textrm}{m}$ and 3 V/${\mu}{\textrm}{m}$, respectively.

A Study on the Resonant Properties of Air gap Antenna using PZT (PZT를 이용한 Air gap 안테나의 공진특성에 관한 연구)

  • 김영훈;조익현;김동현;임승혁;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.195-198
    • /
    • 1999
  • A technique is investigated for achieving broadband properties by controlling the operation frequency of microstrip antennas. The control is achieved by applying DC bias to the microstrip antenna. Air gap antenna with PZT post is fabricated. by using in C-band. In the case of Air gap antenna, the variation of center frequency was about 16Mhz and the bandwidth was increased up to 123.3% at 15dB, 160.7% at 20dB than before applying DC bias respectively. The change property of frequency in air gap antenna is nearly the same the C-V property in PZT.

  • PDF

Characteristics of copper/C films on PET substrate prepared by ECR-MOCVD at room temperature (상온 ECR-MOCVD에 의해 제조되는 Cu/C박막특성)

  • Lee, Joong-Kee;Jeon, Bup-Ju;Hyun, Jin;Byun, Dong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.44-53
    • /
    • 2003
  • Cu/C films were prepared at room temperature under $Cu(hfac)_2-Ar-H_2$ atmosphere in order to obtain metallized polymer by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The room temperature MOCVD on polymer substrate could be possible by collaboration of ECR and a DC bias. Structural analysis of the films by ECR was found that fine copper grains embedded in an amorphous polymer matrix with indistinctive interfacial layer. The increase in $H_2$ contents brought on copper-rich film formation with low electric resistance. On the other hand carbon-rich films with low sheet electric resistance were prepared in argon atmosphere. The electric sheet resistance of Cu/C films with good interfacial property were controlled at $10^8$~$10^0$ Ohm/sq. ranges by the $H_2$/Ar mole ratio and the shielding effectiveness of the film showed maximum up to 45dB in the our experimental range.

Simulations of Capacitively Coupled Plasmas Between Unequal-sized Powered and Grounded Electrodes Using One- and Two-dimensional Fluid Models

  • So, Soon-Youl
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.220-229
    • /
    • 2004
  • We have examined a technique of one-dimensional (1D) fluid modeling for radio-frequency Ar capacitively coupled plasmas (CCP) between unequal-sized powered and grounded electrodes. In order to simulate a practical CCP reactor configuration with a grounded side wall by the 1D model, it has been assumed that the discharge space has a conic frustum shape; the grounded electrode is larger than the powered one and the discharge space expands with the distance from the powered electrode. In this paper, we focus on how much a 1D model can approximate a 2D model and evaluate their comparisons. The plasma density calculated by the 1D model has been compared with that by a two-dimensional (2D) fluid model, and a qualitative agreement between them has been obtained. In addition, 1D and 2D calculation results for another reactor configuration with equal-sized electrodes have also been presented together for comparison. In the discussion, four CCP models, which are 1D and 2D models with symmetric and asymmetric geometries, are compared with each other and the DC self-bias voltage has been focused on as a characteristic property that reflects the unequal electrode surface areas. Reactor configuration and experimental parameters, which the self-bias depends on, have been investigated to develop the ID modeling for reactor geometry with unequal-sized electrodes.

A Current-controlled CMOS operational transconductance amplifier (전류- 제어 CMOS operational transconductance amplifier)

  • Chung, W.S.;Cha, H.W.;Kim, H.B.;Rho, S.R.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.563-566
    • /
    • 1988
  • A current-controlled CMOS operational transconductance amplifier(OTA), whose transconductance is directly proportional to the DC bias current, has been developed for many electronic circuit applications. It features that its transconductance is insensitive to temperature unlike that of the bipolar OTA. This property makes it possible to use the proposed OTA as a basic buliding block in electrically variable circuit design. The SPICE simulation shows that the conversion sensitivity of the circuit is 44.62 mv /${\mu}A$ and the linearity error less than 0.54 % over a bias current range from 2 ${\mu}A$ to 120 ${\mu}A$ when the output is loaded with a 1${\Omega}$ resistor.

  • PDF

Effect of Rapid Thermal Annealing on the Transparent Conduction and Heater Property of ZnO/Cu/ZnO Thin Films (RTA 후속 열처리에 따른 ZnO/Cu/ZnO 박막의 투명전극 및 발열체 특성 연구)

  • Yeon-Hak Lee;Daeil Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.115-120
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin film deposited on the glass substrate with DC and RF magnetron sputtering was rapid thermal annealed (RTA) and then effect of thermal temperature on the opto-electical and transparent heater properties of the films were considered. The visible transmittance and electrical resistivity are depends on the annealing temperature. The electrical resistivity decreased from 1.68 × 10-3 Ωcm to 1.18 × 10-3 Ωcm and the films annealed at 400℃ show a higher transmittance of 78.5%. In a heat radiation test, when a bias voltage of 20 V is applied to the ZCZ film annealed at 400℃, its steady state temperature is about 70.7℃. In a repetition test, the steady state temperature is reached within 15s for all of the bias voltages.

Effect of Electron Beam Irradiation on the Opto-Electrical and Transparent Heater Property of ZnO/Cu/ZnO Thin Films for the Electric Vehicle Application (전자빔 조사에 따른 ZnO/Cu/ZnO 박막의 전기광학적 특성 및 전기자동차용 투명 발열체 특성)

  • Yeon-Hak Lee;Min-Sung Park;Daeil Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.497-501
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin films were deposited at room temperature on a glass substrate using direct current (DC) and radio frequency (RF, 13.56 MHz) magnetron sputtering and then the effect of post-deposition electron irradiation on the structural, optical, electrical and transparent heater properties of the films were considered. ZCZ films that were electron beam irradiated at 500 eV showed an increase in the grain sizes of their ZnO(102) and (201) planes to 15.17 nm and 11.51 nm, respectively, from grain sizes of 13.50 nm and 10.60 nm observed in the as deposited films. In addition, the film's optical and electrical properties also depended on the electron irradiation energies. The highest opto-electrical performance was observed in films electron irradiated at 500 eV. In a heat radiation test, when a bias voltage of 18 V was applied to the film that had been electron irradiated at 500 eV, its steady state temperature was about 90.5 ℃. In a repetition test, it reached the steady state temperature within 60 s at all bias voltages.

Influence of Coating Agent and Particle Size on the Soft Magnetic Properties of Fe Based Nano Crystalline Alloy Powder Core (철기(Fe Based) 나노결정질 합금 분말코어의 코팅제 및 입도가 연자기적 특성에 미치는 영향)

  • Jang, S.J.;Choi, Y.J.;Kim, S.W.;Jeon, B.S.;Lee, T.H.;Song, C.B.;Namkung, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.67-73
    • /
    • 2015
  • This is a basic research for improving soft magnetic property of Fe based nano crystalline alloy powder core. The main study is done around characteristics of permeability, core loss, and DC bias depending on amount of insulation coating agent and particle size. First, $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ amorphous alloy ribbon was fabricated by using the planar flow casting (PFC) device. Then, heat treatment and ball milling were done to obtain alloy powder. The amount of polyether imide (PEI) added to it was varied by 0.5, 1.0, 2.0, 2.5 wt% to have compression molding into $16ton/cm^2$. After going through crystalline heat treatment, the made toroidal nano crystalline powder core ($OD12.7mm^*ID7.62mm^*H4.75mm$) had smaller permeability as amount of insulation coating agent decreases. However, it was found out that core loss and DC bias characteristics have been improved. The reason for this results were expected to be because green density of power core decreases as amorphous alloy powder particles become smaller as amount of alloy powder insulation coating agent increases, it was determined that 1 wt% of insulation coating agent is appropriate. Also, for powder core made based on alloy powder size with amount of insulation coating agent fixed at 1 wt%, effective permeability and core loss were outstanding as particle size became bigger. However, characteristics of DC bias became worse as applied DC field increases. This is expected to be due to insulation effect, residual pores, or molding density of powder core resulting from thickness of coating on surface of alloy powder.