DOI QR코드

DOI QR Code

Growth Characteristics of the ZnO Nanowires Prepared by Hydrothermal Synthesis Technique with Applied DC Bias

DC 바이어스를 인가하여 수열합성법으로 성장시킨 ZnO 나노와이어의 성장 특성

  • Received : 2014.01.22
  • Accepted : 2014.04.02
  • Published : 2014.05.01

Abstract

Hydrothermal synthesis technique could be carried out for growth of ZnO nanowires at relatively low process temperature, and it could be freely utilized with various substrates for fabrication process of functional electronic devices. However, it has also a demerit of relatively slow growth characteristics of the resulting ZnO nanowires. In this paper, an external DC bias of positive and negative 0.5 [V] was applied in the hydrothermal synthesis process for 2~8 [h] to prepare ZnO nanowires on a seed layer of AZO with high electrical conductivity. Growth characteristics of the synthesized ZnO nanowires were analyzed by FE-SEM. Material property of the grown ZnO nanowires was examined by PL analysis. The ZnO nanowires grown with positive bias revealed distinctively enhanced growth characteristics, and they showed a typical material property of ZnO.

Keywords

References

  1. Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, J. Appl. Phys., 84, 3912 (1998). https://doi.org/10.1063/1.368595
  2. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, F. Pearton, and S. J. LaRoche, Mat. Sci. Eng., 47, 147 (2004).
  3. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science, 292, 1897 (2001). https://doi.org/10.1126/science.1060367
  4. D. S. Mao, X. Wang, W. Li, X.H. Liu, Q. Li, and J. F. Xu, J. Vac. Sci. Technol. B, 20, 278 (2002).
  5. T. Y. Wei, P. H. Wei, and Z. L. Wang, J. Am. Chem. Soc., 131, 17690 (2009). https://doi.org/10.1021/ja907585c
  6. Z. L. Wang, Mater. Today, 10, 20 (2007).
  7. M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, Adv. Mater., 13, 113 (2001). https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  8. Y. C. Kong, D. P. Yu, B. Zhang, and B. Fang, and S. Q. Feng, Appl. Phys. Lett., 78, 407 (2001). https://doi.org/10.1063/1.1342050
  9. P. Yang, H. Yan, S. Mao, R. Russo J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater., 12, 323 (2002). https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
  10. L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001). https://doi.org/10.1021/jp010026s
  11. P. X. Gao, J. Song, J. Liu, and Z.L. Wang, Adv. Mater., 19, 67 (2007). https://doi.org/10.1002/adma.200601162
  12. L. N. Demianets and D. V. Kostomarov, Ann. Chem. Sci. Mat., 26, 193 (2001). https://doi.org/10.1016/S0151-9107(01)90035-2
  13. L. N. Deminets, D. V. Kostomarov, and I. P. Kuzmina, Inorg. Mater., 38, 124 (2002). https://doi.org/10.1023/A:1014008909633
  14. L. Vayssieres, Adv. Mater., 15, 464 (2003). https://doi.org/10.1002/adma.200390108