• Title/Summary/Keyword: daylight

Search Result 460, Processing Time 0.024 seconds

A Study on System Optimization according to the Supply Obligations Rate of New and Renewable Energy at an Indoor Gymnasium (실내체육관의 신재생에너지 공급의무비율에 따른 시스템 최적화 연구)

  • Park, Yun-Ha;Kim, Yun-Ho;Won, An-Na;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.51-60
    • /
    • 2015
  • In statutes on the promotion of distribution of new and renewable energy, which were revised in 2014, daylight system and fuel cell were added in addition to existing new and renewable energy sources. This study, therefore, aimed at setting up targets for the introduction of daylight system and analyzing the installation rate of new and renewable energy which can be provided by daylight system for the aggressive use of daylight system, thereby deducting the optimal combination ratio with other new and renewable energy sources. The results of the study are as follows. First, when a prism-shaped daylight system was installed to a round indoor gymnasium among domestic indoor gymnasiums, out of a supply obligations allotment rate of 15% of new and renewable energy, the rate of daylight system was basically set at 2.5%. Second, therefore, with daylight system coming first, the lacked supply obligations rate was taken up by solar photovoltaic, solar heat and geothermal heat. In addition, using the KRESS Program, economic, technical, environmental and complexity evaluations for the upper 5% was made, deducting the optimal ratio of the system. The results produced the following optimal combination ratios: solar photovoltaic (83.3%) in economic evaluation, solar heat (8.3%) and geothermal heat (75%) in technical evaluation, solar photovoltaic (83.3%) in environmental evaluation, and solar photovoltaic (83.3%, the same as in economic evaluation) in complexity evaluation.

A study on Daylighting inducement within bedroom of Elderly care facility by light shelf attaching method for Therapeutic environment - By Dynamic Daylight Simulation Using Weather Data - (치유환경을 위한 광선반 부착방법에 따른 노인요양시설 침실 내 자연채광 유입 환경 연구 - 기상데이터 기반 동적 자연채광 시뮬레이션을 기반으로 -)

  • Cho, Ju-Young;Lee, Ki-Ho;Yun, Young-Il;Lee, Hyo-Won
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.71-79
    • /
    • 2011
  • There are high recognitions on the importance of comforts in Elderly living environment, but the circumstance is that studies on seniors facility space itself are approached only in planning level, and studies on lighting environment which is significantly associated with the comfort in the indoor environment of seniors where they actually spend the majority of their time are not that active. This study was intended to deduce cozy bedroom environment to which existing elderly care facility can be improved by using light shelf the lighting system with the advantage of being able to serve both as building sun visor and lighting window simultaneously in order to analyze the interior environment of bedroom space of elderly care facility the indoor space where the aged spend the majority of their life and examine the directions for the improvement of existing building lighting system through remodeling and renovation. In this study, lighting performance analysis was done in a way that the windows of the bedroom unit in existing facility were set in southbound direction based on two standard types and were put under initial simulation with the use of Autodesk Revit 2011, and after the simulation results were converted to Green Building Studio gbXML file to be used in ECOTECT, Daylight Autonomy a dynamic simulation and static natural lighting simulation the existing method of calculating daylight factors were deduced through Ecotect Analysis 2011. In conclusion, exiting standard model was found in such a condition that the daylight factors for both type A and type B were above 5% the proper standard value, and required improvement. In case light shelf the natural lighting system was attached, the daylight factor was improved to proper standard value for type A, and also was improved above existing facility for type B.

Evaluation of the daylight performance of four-sided atria with various well configurations for interior vegitation growth (실내 조경 식물의 생육을 고려한 4면형 아트리움의 형태변수별 자연채광 성능평가)

  • Song, Il-Hak;Kim, Ji-Hyun;Song, Kyoo-Dong
    • KIEAE Journal
    • /
    • v.11 no.5
    • /
    • pp.137-143
    • /
    • 2011
  • An atrium space, unlike ordinary office rooms, accommodates variety of activities such as moving and resting of people and usually houses variety of vegitation to improve amenity and indoor environment. Many atrium buildings in Korea have been designed by considering the environmental criteria for human beings, not for the vegitation in the atrium space. Especially the daylighting designs are mostly focused on the required illuminances for various visual tasks of the occupants and glare controls. As a result, some atrium spaces do not provide sufficient light to the interior plants. Consequently, these atrium spaces require a high level of electric lighting to compensate the deficit of natural light for the photosynthesis of the vegitation. The purpose of this study was to suggest design guidelines for 4-sided atrium spaces having different well indices (WI), plan aspect ratio (PAR), and cardinal orientation. The findings from this study might be referenced by building designers when designing or selecting canopy systems by considering the daylight performances of the uncovered atrium spaces. In the study, the daylight performance was evaluated in terms of daylight autonomy (DA).

Analysis of Simulation of Daylight and Experiment for Determining on Effective Dimming Ratio (효과적인 조광제어시스템 적용을 위한 주광시뮬레이션과 실험데이터 분석)

  • Kim, Ga-Young;Kim, Yu-Sin;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • This study proposes to increase the energy-saving effects by reducing excessive intensity of radiation of artificial lighting through analyzing daylight incident. A photosensor sends amounts of detected luminous flux to digital control unit(DCU) as a signal and then, it can decide dimming ratios, received a proper dimming signal from DCU. Generally it is effective to control artificial lighting with the different control ratio of each zone by setting a photosensor as same number and rows as artificial lighting. However, it is ineffective to do in initial costs of systems aspect in offices. As a result of grasping the distribution of daylight previously and analyzing daylight and dimming data, we can dim different dimming ratios to each zone of artificial lighting by a single photosensor.

A Study on the Effect of inflow Daylight according to the installation method of controlling Light Shelf and Blind in the Room of General Hospital (종합병원 병실 내 광선반과 블라인드 설치 방식에 따른 자연채광 유입 효과 연구)

  • Cho, Ju Young;Lee, Hyo Won
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.3-10
    • /
    • 2013
  • This study aims to identify convenient surrounding of the hospital room to be improved by specifically focusing on light environment and to examine a change of inflow of the daylight in the hospital room by using blind and light shelf device as base data of preliminary research for comprehending the relationship between healing environment and natural day light. Simulation analysis on previous facilities and the installation of horizontal light shelf that derives the inflow of day light has been specifically referred by using ECOTECT2011 program. In case of C-facility that mostly adjoined to exterior spaces, it was shown to be closer to a proper uniformity factor when an angle was controlled on the light shelf with blind installed at the same time. However, it was not overall appropriate because of visual displeasure occurred from inflow of much day light. In conclusion, it is the form of flat surface such as H-facility that provides an effect after installing the device to derive day light. Especially, it was shown that interior day light environment was improved when installing blind and controlling the angle at the same time.

An Experimental Study of the Optimum Spatial Characteristics and Location of Photosensor for Daylight Responsive Dimming Systems (광센서 조광제어시스템의 광센서 최적 방향성과 위치에 관한 실험적 연구)

  • 정봉근;최안섭
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.8-14
    • /
    • 2003
  • The daylight responsive dimming system, which uses daylight and automatically controls the light output of electric lighting according to the amount of 3.vailable daylight, is an energy saving system Successful performance relies on how photosensor signal can precisely represent workplace illuminance. However, it is not accurately identified due to the dynamic nature of the sun and the sky changed with respect to different seasons or time. The purpose of this research is to identify the correlation between workplace illuminance and photosensor signals, and propose an optimal location and spatial characteristics of the photosensor through experiments, which minimizes the above impacts and improve system performance.

A Study on the Luminosity Control of Bulbs by Using PIC (PIC를 이용한 다수의 전구 밝기제어에 관한 연구)

  • Bae, Cherl-O;Park, Young-San
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.235-240
    • /
    • 2007
  • Recently, energy saving buildings are interested in many parts and many types of thermal insulating materials have been developed. The temperature and brightness of inside and outside building are influenced by weather change and sun's brightness and location. The location of building considering the natural daylight is an important parameter to build a building. To modeling the natural daylight, we used 342 electric bulbs which mean artificial daylight. All these bulbs are installed on dome shape frame. Especially it is focused on the luminosity control of each bulb in this paper. The luminosity of bulbs is controlled by phase control using several PIC microprocessors and triacs.

  • PDF

A Study on the evaluation of the Residential Environment Efficiency by Arrangement of Multi-Family Residential Buildings - focused on the evaluation of daylight and view environment - (공동주택 주동 배치유형에 따른 주거환경성능 평가에 관한 연구 - 일조 및 조망환경성능 평가를 중심으로 -)

  • Choi, Doo Sung;Do, Jin Seok
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.57-64
    • /
    • 2009
  • To make a prediction for a change of residential environment caused by the building code in Seoul which includes loosening the distance between multi-residential buildings, proposals of the four main building arrangements by analyzing examples were selected and then, amount of daylight and view efficiency were analyzed and presented through computer simulation for the proposals. In the result of the analysis, there was a difference among the arrangements but, when the distance between buildings was applied 0.8H as the least, residential environment like daylight and view efficiency per unit significantly decreased in quality. Particularly, for the middle stories(6-15) and the high stories(16~24), when the distance between buildings decreased from the current measurement, 1.0H, to 0.8H, the analysis indicated that 28% of daylight and 7% of view efficiency were reduced. In the building arrangements, an order of the best residential environment was followed in this sequence; balanced arrangement of flat type as the best, combined arrangement between L-shape and tower types, balanced arrangement of tower type, combined arrangement between flat and Y-shape types, grid arrangement of flat type, and combined arrangement between Y-shape and tower types as the least.

A study on light pipe system technology and its application (광파이프 시스템의 조명기술 및 건축적 활용 연구)

  • Shin, Ju Young;Gon, Kim;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.9 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • The use of natural light can improve the quality of indoor environment and also occupants health. In recent years, with an increasing awareness of sustainable development, various innovative methods of integrating daylight into the building have been developed. One such device is the light pipe system. The light pipes are innovative daylighting system that allow the transmission of daylight into the hard-to-reach indoor space. The system consist of mainly three parts. First, a top collector which is mounted on the outside of the roof and gathers skylight and sunlight. Second, light-reflective tube which is coated with highly reflective mirror finish material to transmit the daylight into the diffuser. Third, a diffuser which is installed on the ceiling in the room and spread the daylight into the room. Light pipes have been widely used and researched in many countries such as Australia, America, Canada and Britain. However, despite the significant daylight potential, little work have been carried out in Korea compare to the other countries. In this study, recent lighting technology and application of light pipe system in both Korea and other countries have been compared. For the results, the benefits of each light pipe system and suitable application in Korea is also discussed.

A Design of Photosensor Shape Considering Change of Room Situations for the Daylight Responsive Dimming Systems (광센서 조광제어시스템의 재실변화를 고려한 광센서 형상 디자인)

  • Joo, Keun-Tak;Park, Byung-Chul;Choi, An-Seop;Kyung, Chil-Han
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Daylight responsive dimming systems have been used to save the energy in office buildings. It is needed to consider a configuration of photosensor shape for efficient management of daylight responsive dimming systems. The configuration of optimal photosensor shape must be able to measure the exact luminous flux without changing of setting positions corresponding to the changes of room situations. On this occasion optimal photosensor shape must be designed with configuration of a proper photosensor spatial distribution and location for the daylight responsive dimming systems.