• 제목/요약/키워드: datasets

검색결과 2,091건 처리시간 0.03초

Molecular Signatures in Chicken Lungs Infected with Avian Influenza Viruses

  • Jeong Woong Park;Marc Ndimukaga;Jaeyoung Heo;Ki-Duk Song
    • 한국가금학회지
    • /
    • 제50권4호
    • /
    • pp.193-202
    • /
    • 2023
  • 인플루엔자 A 바이러스(IAVs)는 많은 조류 종의 호흡 기관에 감염되며 사람을 비롯한 다른 동물로 전파될 수 있는 포장된 음극성 역전사 RNA 바이러스이다. 이 연구에서는 이전 연구의 마이크로어레이 데이터를 다시 분석하여 닭에서 공통 및 특이하게 발현되는 유전자(DEG) 및 그들의 생물학적 활동을 식별하였다. 고병원성(HPAIV) 및 저병원성(LPAIV) 인플루엔자 A 바이러스 감염된 닭 세포에서 각각 760개와 405개의 DEG가 발굴되다. HPAIV 및 LPAIV는 각각 670개와 315개의 DEG를 가지고 있으며, 이 중 90개의DEG가 두 바이러스에서 공유된다. HPAIV 감염으로 인해DEG의 기능 주석에 따르면 세포 주기의 기본적인 생물학적 기능과 연관된 다양한 유전자가 발굴되었다. 대상 유전자중에서 CDC Like Kinase 3(CLK3), Nucleic Acid Binding Protein 1(NABP1), Interferon-Inducible Protein 6(IFI6), PIN2 (TERF1) Interacting Telomerase Inhibitor 1(PINX1), 그리고Cellular Communication Network Factor 4(WISP1)의 발현은 polyinosinic:polycytidylic acid(PIC)로 처리된 DF-1 세포에서 변화되었다. 이것은 toll-like receptor 3(TLR3) 리간드인 TLR3 신호에 의해 이러한 유전자의 전사가 조절될 수 있음을 시사하며, 닭에서 AIV의 병리 생리학에 대한 더 나은 이해를 얻기 위해서는 AIV 감염 과정 중에 호스트 반응을 조절할 수 있는 메커니즘을 구명하는 데 더 많은 연구에 초점을 맞추는 것이 필요하다고 사료된다. 이러한 메커니즘에 대한 이해는 신규 치료 전략 개발에 활용될 수 있다.

실내측위 API개발을 통한 실내측위 시뮬레이터 구현에 관한 연구 (A Study on Implementation of Indoor Positioning Simulator through Indoor Positioning API Development)

  • 신창수;김성수
    • 대한토목학회논문집
    • /
    • 제43권6호
    • /
    • pp.873-881
    • /
    • 2023
  • 최근 강남 글로벌 비즈니스센터(GBC) 건설 등 토목기술이 발전해 감에 따라 지상·지하에 대규모 토목·건축물들이 건설되고 있으며, 이와 같은 대규모 시설물의 안전사고 방지, 화재와 같은 위급사항 대처 등과 관련한 기술과 연구가 진행되고 있다. 지상·지하의 개발과 활용이 활발해 짐에 따라 실내에서의 정확한 위치 정보 확보를 위한 연구가 다양하게 진행되고 있으며, 본 연구에서 실내측위 테스트를 위해서 웹 환경에서 손쉽게 가상으로 실내측위를 해 볼 수 있는 시뮬레이터를 개발하였다. 이를 위해서 한국전자통신연구원(ETRI) 13동을 대상으로 실내측위를 위한 테스트 데이터를 구축하고, GIS 공간연산 기법을 이용하는 실내측위 데이터 API(Application Programming Interface)를 개발하였다. 본 연구를 통해 모바일 단말에서 요구되는 다양한 경로정보, 셀 정보, 랜드마크 등 신호 및 영상기반측위에서 요구되는 다양한 공간정보를 실내측위 데이터 API를 통해 신속히 제공이 가능하다.

1시간 내화구조용 철강재 벽체의 내화성능과 단위 패널 휨강도의 관계 고찰 (A Rigorous Examination of the Interplay Between Fire Resistance of 1-Hour Rated Fireproof Steel Walls and the Flexural Strength of Individual Panels)

  • 전수민;옥치열;강성훈
    • 한국건축시공학회지
    • /
    • 제23권5호
    • /
    • pp.537-546
    • /
    • 2023
  • 국내 건축물의 방화구획에 사용되는 철강재 벽체는 품질시험 등을 거쳐 내화구조로 인정받은 경우에만 사용할 수 있다. 품질시험은 내화 및 부가 시험으로 이루어지는데 철강재 벽체의 부가 시험 항목은 가스유해성과 휨강도이다. 가스 유해성의 경우 준불연 심재 사용으로 인하여 실질적으로 생략되므로 내화구조 인정 과정의 부가시험은 휨강도만 실시하는 셈이다. 휨강도의 경우 벽체를 구성하는 단위 판의 강도를 측정하는데, 특정 강도 이상으로 명시되어 인정되기에 강도가 높으면 내화시험 시 시험체 변형에 저항하여 차염성과 차열성을 확보하는데 유리할 것으로 예상해 볼 수 있다. 이에 현재 인정이 유효한 1시간용 건축용 철강재 벽체구조의 인정 당시 시험 데이터를 분석하여 내화성능과 휨강도가 유의한 관계가 있는지 살펴본 결과, 양자 간에 통계적으로 유의한 관계는 없는 것으로 나타났다.

텍스트마이닝과 ChatGPT 분석을 활용한 기업과 대중의 ESG 인식 비교: 지속가능경영보고서와 소셜미디어를 기반으로 (Comparing Corporate and Public ESG Perceptions Using Text Mining and ChatGPT Analysis: Based on Sustainability Reports and Social Media)

  • 최재훈;양성병;윤상혁
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.347-373
    • /
    • 2023
  • 최근 기업의 지속가능한 성장을 이끄는 ESG(Environmental, Social, and Governance) 관리의 중요성이 강조되고 있다. 이에, 본 연구는 기업과 일반 대중 간의 ESG에 대한 인식 차이를 실증적으로 밝히고, ESG 정책의 시행을 방해하는 부정적인 여론과 그 배경을 규명하는 것을 목표로 한다. 이를 위해, LDA(Latent Dirichlet Allocation) 토픽모델링, JST(Joint Sentiment Topic Modeling) 및 의미연결망분석 기법을 사용하여 지속가능경영보고서와 소셜미디어에서의 주요 키워드와 토픽, 그리고 그 연결관계를 분석하였다. 또한, ChatGPT를 활용하여, 텍스트마이닝 분석의 결과를 보완하였다. 분석 결과, 기업과 일반 대중 간 ESG에 대한 인식과 중요도에 상당한 차이가 있음을 확인하였다. 구체적으로, 기업들은 위기 관리, 투명한 지배구조, 윤리적 경영 등에 집중하여 신뢰를 구축하려 했으나, '그린워싱', '중대재해', '불매운동' 등과 같은 부정적 키워드가 자주 소셜네트워크에서 등장하여, 많은 대중들이 기업의 ESG 이슈 처리에 대해 의심하고 있음을 확인하였다. 본 연구는 기업, 정부 기관, 고객 및 투자자를 위한 ESG 전략수립에 도움이 될 수 있는 가이드라인을 제공한다는 점에서 의의가 있다.

딥러닝 기반 온라인 리뷰를 활용한 추천 모델 개발: 레스토랑 산업을 중심으로 (Developing a deep learning-based recommendation model using online reviews for predicting consumer preferences: Evidence from the restaurant industry)

  • 김동언;장동수;엄금철;이가은
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.31-49
    • /
    • 2023
  • 레스토랑 산업의 성장과 함께 레스토랑 오프라인 매장 수는 점차 증가하지만, 소비자는 자신의 선호도에 적합한 레스토랑을 선택하는 데 어려움을 경험하고 있다. 따라서 소비자의 선호도에 맞는 레스토랑을 추천하는 개인화된 추천 서비스의 필요성이 대두하고 있다. 기존 연구에서는 설문조사 및 평점 정보를 활용하여 소비자 선호도를 조사했으나, 이는 소비자의 구체적인 선호도를 효과적으로 반영하는데 어려움이 존재한다. 이러한 배경하에 온라인 리뷰는 방문 동기, 음식 평가 등 레스토랑에 대한 소비자 구체적인 선호도를 효과적으로 반영하기 때문에 필수적인 정보이다. 한편, 일부 연구에서는 리뷰 텍스트에 전통적인 기계학습 기법을 적용하여 소비자의 선호도를 측정하였다. 그러나 이러한 접근 방식은 주변 단어나 맥락을 고려하지 못하는 한계점이 존재한다. 따라서 본 연구는 딥러닝을 효과적으로 활용하여 온라인 리뷰에서 소비자의 선호도를 정교하게 추출하는 리뷰 텍스트 기반 레스토랑 추천 모델을 제안한다. 본 연구에서 제안된 모델은 추출된 높은 수준의 의미론적 표현과 소비자-레스토랑 상호작용을 연결하여 소비자의 선호도를 정확하고 효과적으로 예측한다. 실험 결과에 따르면 본 연구에서 제안된 추천 모델은 기존 연구에서 제안된 여러 모델에 비해 우수한 추천 성능을 보이는 것으로 나타났다.

효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석 (Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System)

  • 김수인;전영진;이상범;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.519-524
    • /
    • 2023
  • 해싱 기반 이미지 검색에서는 조작된 이미지의 해시코드가 원본 이미지와 달라 동일한 이미지 검색이 어렵다. 본 논문은 이미지의 질감, 모양, 색상 등 특징 정보로부터 지각적 해시코드를 생성하는 자기 감독 기반 딥해싱 모델을 제안하고 평가한다. 비교 모델은 오토인코더 기반 변분 추론 모델들이며, 인코더는 완전 연결 계층, 합성곱 신경망과 트랜스포머 모듈 등으로 설계된다. 제안된 모델은 기하학적 패턴을 추출하고 이미지 내 위치 관계를 활용하는 SimAM 모듈을 포함하는 변형 추론 모델이다. SimAM은 뉴런과 주변 뉴런의 활성화 값을 이용한 에너지 함수를 통해 객체 또는 로컬 영역이 강조된 잠재 벡터를 학습할 수 있다. 제안 방법은 표현 학습 모델로 고차원 입력 이미지의 저차원 잠재 벡터를 생성할 수 있으며, 잠재 벡터는 구분 가능한 해시코드로 이진화 된다. CIFAR-10, ImageNet, NUS-WIDE 등 공개 데이터셋의 실험 결과로부터 제안 모델은 비교 모델보다 우수하며, 지도학습 기반 딥해싱 모델과 동등한 성능이 분석되었다.

불균형 정형 데이터를 위한 SMOTE와 변형 CycleGAN 기반 하이브리드 오버샘플링 기법 (A Hybrid Oversampling Technique for Imbalanced Structured Data based on SMOTE and Adapted CycleGAN)

  • 노정담;최병구
    • 경영정보학연구
    • /
    • 제24권4호
    • /
    • pp.97-118
    • /
    • 2022
  • 이미지와 같은 비정형 데이터의 불균형 클래스 문제 해결에 있어 생산적 적대 신경망(generative adversarial network)에 기반한 오버샘플링 기법의 우수성이 알려짐에 따라 다양한 연구들이 이를 정형 데이터의 불균형 문제 해결에도 적용하기 시작하였다. 그러나 이러한 연구들은 데이터의 형태를 비정형 데이터 구조로 변경함으로써 정형 데이터의 특징을 정확하게 반영하지 못한다는 점이 문제로 지적되고 있다. 본 연구에서는 이를 해결하기 위해 순환 생산적 적대 신경망(cycle GAN)을 정형 데이터의 구조에 맞게 재구성하고 이를 SMOTE(synthetic minority oversampling technique) 기법과 결합한 하이브리드 오버샘플링 기법을 제안하였다. 특히 기존 연구와 달리 생산적 적대 신경망을 구성함에 있어 1차원 합성곱 신경망(1D-convolutional neural network)을 사용함으로써 기존 연구의 한계를 극복하고자 하였다. 본 연구에서 제안한 기법의 성능 비교를 위해 불균형 정형 데이터를 기반으로 오버샘플링을 진행하고 그 결과를 SMOTE, ADASYN(adaptive synthetic sampling) 등과 같은 기존 기법과 비교하였다. 비교 결과 차원이 많을수록, 불균형 정도가 심할수록 제안된 모형이 우수한 성능을 보이는 것으로 나타났다. 본 연구는 기존 연구와 달리 정형 데이터의 구조를 유지하면서 소수 클래스의 특징을 반영한 오버샘플링을 통해 분류의 성능을 향상시켰다는 점에서 의의가 있다.

Accurate Measurement of Agatston Score Using kVp-Independent Reconstruction Algorithm for Ultra-High-Pitch Sn150 kVp CT

  • Xi Hu;Xinwei Tao;Yueqiao Zhang;Zhongfeng Niu;Yong Zhang;Thomas Allmendinger;Yu Kuang;Bin Chen
    • Korean Journal of Radiology
    • /
    • 제22권11호
    • /
    • pp.1777-1785
    • /
    • 2021
  • Objective: To investigate the accuracy of the Agatston score obtained with the ultra-high-pitch (UHP) acquisition mode using tin-filter spectral shaping (Sn150 kVp) and a kVp-independent reconstruction algorithm to reduce the radiation dose. Materials and Methods: This prospective study included 114 patients (mean ± standard deviation, 60.3 ± 9.8 years; 74 male) who underwent a standard 120 kVp scan and an additional UHP Sn150 kVp scan for coronary artery calcification scoring (CACS). These two datasets were reconstructed using a standard reconstruction algorithm (120 kVp + Qr36d, protocol A; Sn150 kVp + Qr36d, protocol B). In addition, the Sn150 kVp dataset was reconstructed using a kVp-independent reconstruction algorithm (Sn150 kVp + Sa36d, protocol C). The Agatston scores for protocols A and B, as well as protocols A and C, were compared. The agreement between the scores was assessed using the intraclass correlation coefficient (ICC) and the Bland-Altman plot. The radiation doses for the 120 kVp and UHP Sn150 kVp acquisition modes were also compared. Results: No significant difference was observed in the Agatston score for protocols A (median, 63.05; interquartile range [IQR], 0-232.28) and C (median, 60.25; IQR, 0-195.20) (p = 0.060). The mean difference in the Agatston score for protocols A and C was relatively small (-7.82) and with the limits of agreement from -65.20 to 49.56 (ICC = 0.997). The Agatston score for protocol B (median, 34.85; IQR, 0-120.73) was significantly underestimated compared with that for protocol A (p < 0.001). The UHP Sn150 kVp mode facilitated an effective radiation dose reduction by approximately 30% (0.58 vs. 0.82 mSv, p < 0.001) from that associated with the standard 120 kVp mode. Conclusion: The Agatston scores for CACS with the UHP Sn150 kVp mode with a kVp-independent reconstruction algorithm and the standard 120 kVp demonstrated excellent agreement with a small mean difference and narrow agreement limits. The UHP Sn150 kVp mode allowed a significant reduction in the radiation dose.

Comparison of One- and Two-Region of Interest Strain Elastography Measurements in the Differential Diagnosis of Breast Masses

  • Hee Jeong Park;Sun Mi Kim;Bo La Yun;Mijung Jang;Bohyoung Kim;Soo Hyun Lee;Hye Shin Ahn
    • Korean Journal of Radiology
    • /
    • 제21권4호
    • /
    • pp.431-441
    • /
    • 2020
  • Objective: To compare the diagnostic performance and interobserver variability of strain ratio obtained from one or two regions of interest (ROI) on breast elastography. Materials and Methods: From April to May 2016, 140 breast masses in 140 patients who underwent conventional ultrasonography (US) with strain elastography followed by US-guided biopsy were evaluated. Three experienced breast radiologists reviewed recorded US and elastography images, measured strain ratios, and categorized them according to the American College of Radiology breast imaging reporting and data system lexicon. Strain ratio was obtained using the 1-ROI method (one ROI drawn on the target mass), and the 2-ROI method (one ROI in the target mass and another in reference fat tissue). The diagnostic performance of the three radiologists among datasets and optimal cut-off values for strain ratios were evaluated. Interobserver variability of strain ratio for each ROI method was assessed using intraclass correlation coefficient values, Bland-Altman plots, and coefficients of variation. Results: Compared to US alone, US combined with the strain ratio measured using either ROI method significantly improved specificity, positive predictive value, accuracy, and area under the receiver operating characteristic curve (AUC) (all p values < 0.05). Strain ratio obtained using the 1-ROI method showed higher interobserver agreement between the three radiologists without a significant difference in AUC for differentiating breast cancer when the optimal strain ratio cut-off value was used, compared with the 2-ROI method (AUC: 0.788 vs. 0.783, 0.693 vs. 0.715, and 0.691 vs. 0.686, respectively, all p values > 0.05). Conclusion: Strain ratios obtained using the 1-ROI method showed higher interobserver agreement without a significant difference in AUC, compared to those obtained using the 2-ROI method. Considering that the 1-ROI method can reduce performers' efforts, it could have an important role in improving the diagnostic performance of breast US by enabling consistent management of breast lesions.

Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise

  • Joo Hee Kim;Hyun Jung Yoon;Eunju Lee;Injoong Kim;Yoon Ki Cha;So Hyeon Bak
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.131-138
    • /
    • 2021
  • Objective: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). Materials and Methods: This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. Results: Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). Conclusion: DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.