Recently, we have witnessed a host of emerging tools in the management support systems (MSS) area including the data warehouse/multidimensinal databases (MDDB), data mining, on-line analytical processing (OLAP), intelligent agents, World Wide Web(WWW) technologies, the Internet, and corporate intranets. These tools are reshaping MSS developments in organizations. This article reviews a set of emerging data management technologies in the knowledge discovery in databases(KDD) process and analyzes their implications for decision support. Furthermore, today's MSS are equipped with a plethora of AI techniques (artifical neural networks, and genetic algorithms, etc) fuzzy sets, modeling by example , geographical information system(GIS), logic modeling, and visual interactive modeling (VIM) , All these developments suggest that we are shifting the corporate decision making paradigm form information-driven decision making in the1980s to knowledge-driven decision making in the 1990s.
The purposes of this study were to examine if a decision making by a tourist sequentially or hierarchically occurs in a tourism destination and to test determinants that have an effect on both a sequential and non-sequential decision making. An instrument for the study was developed with three steps. A total of 420 and 380 questionnaire were collected respectively for the first two round surveys. For the third step, a pilot test was conducted with 30 respondents. And the data analysis utilized SPSS 18.0. A logistic regression analysis with variables of tourism activity and demography was employed to investigate the factors that affect a sequence of decision-making process. As an important result, the higher the age of the tourist in a tourism destination, the more conspicuous the consumption expenditure is made through the sequential decision-making process. Additionally, it is unreasonable to apply the premises and assumptions in extant consumer behavior to tourist behavior. The process of decision making by tourists in tourism areas is driven by either non-sequential or non-hierarchical decision-making process. More discussion and implications were provided.
4차 산업혁명시대에 지능정보기술의 발전에 따라 인공지능의 다양한 역할이 주목을 받고 있다. 구글의 알파고를 계기로 인공지능은 더 이상 공상의 기술이 아닌 실존하는 기술이라는 점에서 사회전역에 파급효과를 가져올 것으로 예상되고 있다. 이에 따라 본 연구에서는 공공부문에서 인공지능을 활용한 정책결정의 가능성과 쟁점에 대한 탐색적 논의를 진행하였다. 이에 따른 연구목적은 세 가지 측면으로 구분되며, 첫째, 공공부문에서 인공지능이 정책결정까지 이어질 수 있는지에 대한 검토이다. 둘째, 인공지능의 정책결정과정이 기존 정책결정과의 어떠한 차이를 가지는가이다. 셋째, 인공지능이 정책결정에 도입될 경우에 나오게 될 쟁점을 다루었다. 이러한 인공지능에 의한 정책결정이 기존의 정채결정과 구별되는 점은 많은 정보와 대안에 기반한 합리적 의사결정, 투명성 및 신뢰성의 제고, 정책이슈에 대한 객관적인 시각, 신속한 의사결정 등이다. 하지만 인공지능의 정책의사결정시 야기되는 쟁점 역시 존재 한다. 첫째는 인공지능의 우월성, 둘째 윤리성 논란, 셋째 책임성, 넷째 기존 민주주의의 변화, 다섯째 공공부문 인력의 대체 논쟁, 여섯째 인공지능에 필요한 데이터 활용의 문제점 등이다. 공공부문 정책의사결정에서 인공지능의 도입은 향후 실현될 것이기 때문에, 사회적 충격을 최소화하기 위해 그에 따른 순기능과 역기능에 대한 융합적인 접근이 필요하다.
We propose a new approach to classifying a time series data into one of the autoregressive moving-average (ARMA) models. It is bases on two pattern recognition concepts for solving time series identification. The one is an extended sample autocorrelation function (ESACF). The other is a neural network-driven decision tree classifier(NNDTC) in which two pattern recognition techniques are tightly coupled : neural network and decision tree classfier. NNDTc consists of a set of nodes at which neural network-driven decision making is made whether the connecting subtrees should be pruned or not. Therefore, time series identification problem can be stated as solving a set of local decisions at nodes. The decision values of the nodes are provided by neural network functions attached to the corresponding nodes. Experimental results with a set of test data and real time series data show that the proposed approach can efficiently identify the time seires patterns with high precision compared to the previous approaches.
데이터 기반 의사결정 방법론, 고도화된 빅데이터 처리 기법의 발달로 데이터를 처리하는 방법에 대한 정보의 수요가 늘어나고 있다. 데이터를 활용하는 거의 모든 작업과 연구에서 데이터 전처리 과정이 포함되나, 이러한 과정은 주장하고자 하는 내용이나 결과물을 도출하기 위한 수단으로써 언급될 뿐 실질적인 과정에 대해서 자세하게 설명하고 있는 연구는 부족하였다. 실질적인 분석 기법을 활용하기 이전의 단계로 간단하게 언급되는 경우가 많아 데이터 처리에 대한 인사이트를 획득하기 어려운 경우가 많았다. 따라서 이 연구에서는, raw data에서부터 데이터를 처리하는 과정, 즉 데이터 처리 파이프라인에 대해서 자세하게 작성하고자 하였다. 특히 수입식품 수입 절차에 대한 설명을 구체화함으로써 해당 상황에서 데이터의 필드들이 어떻게 해석될 수 있고 어떠한 필드들을 왜 활용하게 되었는지에 대한 상황과 관련 도메인 지식을 공유하면서 흐름을 기술하고자 하였다.
Nowadays data-based decision making is emerging as the center of the business environment paradigm, but many companies do not have data-driven decision-making systems. It has also been studied that using an expert's intuition in decision making can be more efficient in terms of speed and cost, compared to analytical decision making. The goal of this study is to analyze customer churn factors using a group of experts within a financial company from the viewpoint of decision-making efficiency. We applied a debit card 'A', product of the National Credit Union Federation of Korea. The churn factors of all the financial expert groups were examined. Also. the difference in each group (management support, card recruitment, customer service group) was analyzed. We expect that this study will be helpful in the practical aspects of managers whose environments is lack data-oriented infrastructure and culture.
The 6th International Conference on Construction Engineering and Project Management
/
pp.496-500
/
2015
International construction projects are inherently more risky than domestic projects with multi-dimensional uncertainties that require complementary risk management at both the country and project levels. However, despite a growing need for systematic country evaluations, most studies have focused on project-level decisions and lack country-based approaches for firms in the construction industry. Accordingly, this study suggests data-driven approaches for evaluating countries using two quantitative models. The first is a two-stage country segmentation model that not only screens negative countries based on country attractiveness (macro-segmentation) but also identifies promising countries based on the level of past project performance in a given country (micro-segmentation). The second is a multi-criteria country segmentation model that combines a firm's business objective with the country evaluation process based on Kraljic's matrix and fuzzy preference relations (FPR). These models utilize not only secondary data from internationally reputable institutions but also performance data on Korean firms from 1990 to 2014 to evaluate 29 countries. The proposed approaches enable firms to enhance their decision-making capacity for evaluating and selecting countries at the early stage of corporate strategy development.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권1호
/
pp.340-367
/
2018
Storage services integration can be done for achieving high availability, improving data access performance and scalability while preventing vendor lock-in. However, multiple services environment management and interoperability have become a critical issue as a result of service architectures and communication interfaces heterogeneity. Storage federation model provides the integration of multiple heterogeneous and self-sufficient storage systems with a single control point and automated decision making about data distribution. In order to integrate diverse heterogeneous storage services into a single storage pool, we are proposing a storage service federation framework named BoxBroker. Moreover, an automated decision model based on a policy-driven data distribution algorithm and a service evaluation method is proposed enabling BoxBroker to make optimal decisions. Finally, a demonstration of our proposal capabilities is presented and discussed.
기업의 데이터 분석 및 활용 역량은 전사 차원의 지식경영과 의사결정에 중요한 역할을 한다. 이 연구는 대형 언어 모델이 기업데이터 분석에서 어떻게 활용될 수 있는지 알아보고자 수행되었다. 구체적으로 인적자원 분야에 초점을 맞추어, 대형 언어 모델의 데이터 분석 역량을 검증해 보았다. 이를 위해 인사분야에서 많은 연구가 이루어져온 공개데이터셋 IBM HR 데이터를 소재로, 선행연구들에서 이루어진 머신러닝 기반 이직자 예측 분석을 ChatGPT를 통해 재현하고 그 예측성능을 비교해보았다. 고급 프로그래밍 역량이 필요했던 과거 연구방식과 달리, 분석가의 자연어 요청으로 진행한 ChatGPT 기반 머신러닝 데이터 분석은 훨씬 쉽고 빠르다는 장점이 있었고, 예측 정확도 역시 선행연구와 비교해 경쟁력 있는 수준을 기록했다. 이는 그동안 고급 프로그래밍 역량이 요구되던 기업데이터 분석 분야에서, ChatGPT를 비롯한 대형 언어 모델들이 효과적이고 실질적인 대안이 될 수 있다는 가능성을 시사한다. 또한 이를 통해 데이터 분석의 대중화 나아가 데이터 기반 의사결정(DDDM: Data-Driven Decision Making)의 확산에도 기여할 수 있을 것으로 기대된다. 데이터분석 과정에서 사용한 프롬프트와 ChatGPT가 생성한 프로그래밍 코드도 부록에 수록하여 검증 가능하게 함으로써, 향후 대형 언어 모델을 활용한 데이터분석 연구의 초석을 제공하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.