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Abstract 
 

Storage services integration can be done for achieving high availability, improving data access 
performance and scalability while preventing vendor lock-in. However, multiple services 
environment management and interoperability have become a critical issue as a result of 
service architectures and communication interfaces heterogeneity. Storage federation model 
provides the integration of multiple heterogeneous and self-sufficient storage systems with a 
single control point and automated decision making about data distribution. In order to 
integrate diverse heterogeneous storage services into a single storage pool, we are proposing a 
storage service federation framework named BoxBroker. Moreover, an automated decision 
model based on a policy-driven data distribution algorithm and a service evaluation method is 
proposed enabling BoxBroker to make optimal decisions. Finally, a demonstration of our 
proposal capabilities is presented and discussed. 
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1. Introduction 

IT industry is facing enormous challenges regarding data storage and management, as a 
consequence of the incredible volume of data that is being generated from all kind of sources 
and formats. Moreover, every year data generation speed is exponentially increasing. 
Approximately every two years, world's generated data is doubled [1]. For example, in 2013 
the world’s generated data was around four zettabytes, by 2015 increased to nearly nine 
zettabytes, and is expected to reach 40 zettabytes in 2020 [2]. In order to address this 
phenomenon, storage vendors are developing innovative solutions, for example, cloud storage 
[3, 4, 5], distribute file systems [6, 7, 8], enterprise storage [9, 10, 11], among others. 
Nevertheless, enterprises often are forced to implement multiple storage solutions so they can 
keep with the demand. As a result of heterogeneous architectures and management interfaces 
on those storage solutions, having multiple implementations increases management cost and 
complexity, as well as, preventing the interoperability between them. 

Multiple storage solutions integration can be useful for improving data availability, security, 
reliability, durability, and storage scalability to the expenses of increasing management 
complexity. Storage Federation model purpose is to address management complexity in 
multiple storage solution environments by providing a common management interface and 
integrating rule-based decisions. In 2010, Vellante [12] defined Federated Storage as “the 
collection of autonomous storage resources governed by a common management system that 
provides rules about how data is stored, managed, and migrated throughout the storage 
network”. In 2011,  3PAR Peer Motion software was released by Hewlett Packard Enterprise 
in order to federate multiple  3PAR StoreServ systems [13]. The main benefits introduced by  
3PAR Peer Motion where load balancing, non-disruptive data migration and lifecycle 
management costs reduction. However, this software is limited to the use of  3PAR StoreServ 
systems.  

In this paper, we aim to face the challenges of file-based heterogeneous storage service 
federation and the automated rule-based decision making. Our contributions can be 
summarized as follows: 
• We propose a storage service federation framework in order to integrate multiple 

file-based heterogeneous storage services and provide a single control point with API 
for fast application development. 

• We define a policy model to easily create rules about how data is distributed and 
replicated for optimal service selection based on predefined policies is proposed. 

• A storage service evaluation method based on log analysis is proposed, with the 
purpose of creating dynamic services profiles. 

• A file striping mechanism is implemented that along with our framework parallel data 
processing are able to improve performance and data throughput. 

The rest of this paper is organized as follows; Section 2 analyses and discusses related work. 
Section 3 introduces BoxBroker’s architecture and implementation details. Section 4 defines 
BoxBroker’s decision algorithm. Section 5 describes our services evaluation method. Section 
6 shows the implemented file striping mechanism. Section 7 presents conducted experiments 
and results. Section 8 summarizes our contributions and recognizes future work. 
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2. Related Work 
There are numerous storage federation approaches, most of them are focused on cloud storage 
federation for preventing vendor lock-in and simplifying multiple accounts management. 
Yang and Ren [14] provide a framework for federating open cloud storage services and the 
selection model is purely based on service performance and available space. Vernik et al. [15] 
present an on-boarding federation mechanism for adding a special layer on cloud storage 
services allowing them to import data from other services. This approach requires certain 
adaptability level from the cloud service provider becoming hard to implement. Libardi et al. 
[16] propose a Multiple-cloud Storage Selection Framework modeled as a knapsack problem, 
allowing them to select the best subset of providers in order to fulfill users requirements. Its 
main limitation is the requirement of user input parameter selection for each file upload. 
Janviriya et al. [17] approach consist in a Multiple Cloud Storage Integration Systems based 
on RAID (Redundant array of independent disks) 0 stripping technology which improves 
performance, storage capacity, and security. However, no fault tolerance mechanism is 
proposed. Zhao et al. [18] propose a middleware that enables any end-user application to 
automatically and securely stores files in multiples cloud storage accounts. Shah et al. [19] 
implement a multi-cloud storage integration service for personal cloud storage users. Their 
approach presents multiple storage accounts in a single interface but lacks integration as a 
single storage pool. Malensek et al. [20] propose a private and public cloud federation method 
in order to improve queries throughput in large datasets. 

In addition, several approaches referred to Service Selection and Data Distribution were 
studied. Esposito et al. [21] propose three different methods for selecting the best service set in 
order to maximize the quality of service and minimize cost. The three methods utilized are 
based on Fuzzy Logic, Theory of Evidence and Game Theory. Chang et al. [22] use a 
probability-based algorithm in order to select the best coordination of services that achieved 
the maximum availability based on a given budget.  Other studied approaches regarding data 
allocation are [23, 24, 25], focusing on load balancing in heterogeneous storage environments. 
In most of the mentioned related works, only one or two aspects of storage are considered. For 
example, [21] and [22] mainly focus on availability and cost, while [23, 24, 25] focus on 
capacity, access frequency, and performance. 

Other investigated works were focused on log and text sentiment analysis. Log files have 
been an important source of information to organizations in order to quickly identify issues 
[26]. Mho et al. [27] propose a multi-stage analysis architecture using pattern matching, 
machine learning, and log analysis in order to effectively detect SQL-injection attacks. Grech 
and Clough [28] propose a  method based on Jaccard coefficient, with the purpose of 
evaluating log clustering analysis stability. Chen et al. [29] propose a cloud security 
framework based on log analysis using security audit system standards. On the other hand, 
sentiment analysis has been used to analyze text's polarity in social media in order to define 
whether the text is positive or negative based on specifics topics [30]. Hamzehei et al. [30] 
propose a Semantic Scoring Sentiment Analysis Service, which evaluates the scalability and 
efficiency of multiple sentiment analysis methods using a large volume of microblogs. 

Our work proposes a new added value to storage federation consisting in the possibility of 
federating different kinds of file-based storage services including; cloud storage, distributed 
file systems, object storage, ftp, among others. In addition, our work relies on a policy-based 
data distribution algorithm that allows the definition of any number of storage aspects in order 
to select the best services to efficiently fulfill clients requirements. Moreover, a service 
analysis method based on logs is provided for periodic service evaluation and maintaining 
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dynamic service profile. In addition, our work relies on a policy-based data distribution 
algorithm that allows the definition of any number of storage aspects in order to select the best 
services to efficiently fulfill clients requirements. Moreover, a service analysis method based 
on logs is provided for periodic service evaluation and maintaining dynamic service profile. 
Table 1 shows a comparison between BoxBroker and other approaches. 

Table 1. Related Work Comparison Table 

 Approaches 
[14] [16] [17] [18] BoxBroker 

Storage 
aspects used 
for selection 

Availability  x o x x o 
Performance o o x x o 
Cost  x o x x o 
Available space o x o o o 
Allows definition of 
other aspects? x o x x o 

Allowed 
storage types 

Cloud storage o o o o o 
Non-cloud storage x x x x o 

Type of 
policies (none/static/dynamic) none static none none dynamic 

Service 
analysis Service analysis x x x x o 

Data 
protection 

Striping x x o o o 
Encryption x o x o x 

 

3. BoxBroker: Storage Service Federation Framework 
This section describes our proposed framework. BoxBroker allows clients to work across 
multiple file-based storage services like a single one. It converts distinct storage services in a 
seamless pool and offers a single control point. On the other hand, it integrates an intelligent 
policy-driven data distribution algorithm and a log-based service analysis, in order to make 
optimal and automated decisions. Moreover, it enables clients to modify its normal behavior 
creating their own policies.  

The main goal of our framework is to provide a federated storage layer for fast application 
development on top of it while giving enough customization power. BoxBroker can work with 
any file-based storage service through Storage Service Interface implementation. This allows 
clients to integrate our framework with their desired services, instead of restricting them to a 
fixed number of implemented services. Furthermore, it supports a single service multiple 
accounts integration. BoxBroker accepts services with three type of authentication: none, 
user-password and OAuth 2.0 [31]. Some examples of supported services are: cloud storage, 
distribute file systems, network file systems, object storage (parent-child file storage), ftp, 
among others. 

BoxBroker can be configured to store or not the location of the files. If storing file location 
is set off, means that it acts like a middleware between clients and storage services. Storing file 
hierarchy is delegated to clients, giving them more flexibility in order to choose the suitable 
environment for the task. Nevertheless, file location storage is not required.  
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We also propose a REST API wrapper for our framework. it provides a token-based 
authentication process, allowing clients to register, authenticate and request authorization 
token to call the API endpoints. More details in Section 3.7. 

BoxBroker’s architecture is shown in Fig. 1. The framework is composed of six main 
components: Policy Engine, OAuth Manager, Metadata Manager, Storage Manager, Storage 
Service Analyzer, and Storage Service Interface, which are described in sections 3.1 to 3.6 
respectively. 

 

Fig. 1. BoxBroker Framework's Architecture 

3.1 Policy Engine 
This component can be considered as BoxBroker’s brain. Therefore, it is responsible for 
decision making, services selection, request verification, and request complementation. In 
order to make automated decisions a policy-based data distribution algorithm is implemented 
(refer to Section 4 for more details). Three different policy models are implemented. The first 
model, which is specified in section 4.2.2, defines the importance order for services profiles 
metrics. The second one specifies the number of replicas for a given condition. This second 
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model allows clients to define a different number of replicas for distinct data. The third model 
indicates if the file must be striped and specifies the blocks size. Policy Engine is composed of 
three sub-components: 

3.1.1 Request Interceptor 
Is responsible for verifying and complementing each request before sending it to the Storage 
Manager. In order to complement a request, services credentials must be included. Therefore, 
all request must be verified for this component. Request Interceptor’s obligations can be split 
into two blocks: 

• Obtaining Credentials, in a case of policy-applicable request this process gets the 
services credentials from Metadata Manager for the selected services by Service 
Selector and Matching Policies Verifier. For example, writing a file or retrieving a 
replicated file, in both a decision must be taken. On the other hand, for a not 
policy-applicable request, meaning the request must be sent to all services or a 
specific service, no decision is required. For example, reading a not replicated file or 
getting the available space. 

• Complementing Request, integrates services credentials with the original request and 
sends it to Storage Manager. Furthermore, in the case of OAuth 2.0 credentials, these 
are sent to OAuth Manager for verification before integrating them with the request. 

3.1.2 Matching Policy Verifier 
Is in charge of verifying if any policy condition matches with the current file. First, active 
policies are requested to Metadata Manager. Each policy condition is stored as string 
expression, for example, (File.Size >= 12500000 AND File.Size <= 62500000) OR 
File.TypeMatch("(audio|video)/\S+"), Table 2 shows policy’s condition allowed operators. 
The second step is to parse those conditions into binary expression trees  [32], as shown in Fig. 
2. Moreover, expression trees are compiled in order to create executable rules [33]. Then, 
policies, where their rule returns a match, are selected. Because each policy is independent of 
the others, a parallel processing technique is used for policies verification. As we mentioned 
before, there are three kinds of policies, importance order, replication, and file striping policies. 
Matching multiple importance order policies is allowed. However, in the case of matching 
multiple replication or file striping policies, the last created policy is selected. Finally, 
matching policies are given to Service Selector. 

Table 2. Policy Condition Allowed Operators 

Type Operator Description 

Relational >, <, >=, <= 
112 Greater than, Less than, Greater than or equal to, Less 
than or equal to [34]. Allowed for File.Size only. 

Equality ==, != Equal to, Not equal to [34]. Allowed for all properties. 
Conditional AND, OR, &&, || Conditional AND, Conditional OR [34] 
Unary ! Logical negation [34]. 

Special 

Contains("xxx") 
Verify if a specified substring occurs withing the property. 
Allowed for File.Name and File.Type [34]. 

TypeIn("xxx,yyy") 
Verify if the type of the file is equal to any of the specified 
types. Types are specified in a comma separated string. It 
must be applied to File instead of File.Type. 
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TypeMatch("xxx") Verify if the type of the file matches a regular expression. It 
must be applied to File instead of File.Type. 

NameMatch("xxx") Verify if the name of the file matches a regular expression. 
It must be applied to File instead of File.Name. 

 

 

Fig. 2. Parsed Expression Tree 

3.1.3 Service Selector 
Is responsible for selecting the best group of services according to a set of policies and a 
replication factor. Service Selector implements a policy-based service selection algorithm 
widely described in Section 4. If a file is set to use striping technique the blocks are distributed 
and replicated across all services, see Section 6 for more details. In the case of file storing 
request, an extra request is generated for getting services available space. Services without 
enough available space are discarded from the selection process. Furthermore, if no policies 
are provided service selection is purely based on the available space. On the other hand, for 
replicated file retrieving request and no policies provided service selection is random. 

3.2 OAuth Manager 
This component is designed for allowing the implementation of services that used OAuth 2.0 
authentication protocol, mostly Cloud Storage [31]. Service profiles using OAuth 2.0 protocol 
must specify ClientId, ClientSecret, Scope, OAuth Url, OAuth Url extra parameters, Token 
Url, and Support Refresh Token parameters in order to enable OAuth Manager to follow the 
authentication flow. OAuth Manager has two sub-components: 

• Authentication Url Builder, is responsible for constructing an OAuth authentication 
Url based on a given service's profile and the desired redirect Url. Moreover, it verifies 
if the constructed Url is valid. 

• Token Manager, is the component responsible for requesting, refreshing and 
canceling services access tokens. 

3.3 Metadata Manager 
Defines storage services, policies, and file hierarchy domain models [35]. Moreover, 
implements an access interface to allow other components retrieve, create and modify models 
information. The component uses Microsoft Entity Framework code-first approach, which is a 
domain driven design technology focused in domain classes creation instead of database 
design [36]. Using Entity Framework enables client applications the possibility of easily 
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extending our domain models by creating new domain classes or overwriting the existing 
ones.  

3.4 Storage Manager 
It is a centralized storage resource management component. It exposes an interface to access 
multiple storage service resources from a single point. Moreover, it implements parallel 
processing technique to access multiple services concurrently and improve the execution time. 
Storage Manager uses reflection-oriented programming in order to dynamically create and 
access services implementation classes [37]. It is composed of three sub-components: 

• Virtual Storage Resource Interface, exposes a single access point converting all the 
distinct storages services in a seamless storage pool. The methods are divided into two 
main sub-classes: 

o Storage Data Operations, defines all data access operation. For example, 
writing, retrieving, and updating files. 

o Storage Information Operations, consists of accessing services statistics 
information. For example, available space, service account information, and 
storage metadata. 

• Storage Service Instance Manager, is responsible for service implementation classes 
discovery and instance creation. This component uses reflection-oriented 
programming approach to find the implemented class for each service according to a 
unique name defined in storage service domain model and the Storage Service 
Interface inheritance. 

• Task Manager, is in charge of parallelly accessing multiple storage services and 
combined their responses. It uses .Net Task Parallel Library in order to create 
independent tasks that run concurrently. This technology provides an efficient and 
scalable system resources use. Moreover, it has been enhanced for load balancing and 
throughput maximization making relatively lightweight tasks. As well as provide a 
rich set of APIs for waiting, cancellation, exception handling, status reporting and 
scheduling [38]. Additionally, Task Manager asynchronously reports all storage 
services response stats to Storage Service Analyzer for logging and analysis. 

3.5 Storage Service Analyzer 
This component is designed for maintaining dynamic services profiles based on log analysis. 
Storage Service Analyzer collects services response stats (e.g. service and client identification, 
request type, response time, errors, file attributes), then parse and store them for further 
analysis. The analysis extracts relevant information like service availability, performance, and 
load. Finally, in order to make better decisions, services profiles are constantly updated with 
the analysis results. It is divided into two sub-components: 

• Log Manager, is composed of Elastic Open Source Stack. Elastic Stack is a set of 
software useful for collecting, parsing, searching, storing, analyzing and visualizing 
data from different sources and formats in real time [39]. Used components from 
Elastic Stack are: Logstash for logs collection, verification, and parsing; Elasticsearch 
for logs storage and fast searching; Kibana for real time logs data visualization and 
service monitoring. 

• Log Analyzer, this is a log analysis service which usee logs stored in Log Manager to 
extract relevant information about the federated storage services. It takes advantage of 
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Elastic Stack real time processing and fast searching to keep up-to-date storage 
services profiles. Section 5 presents the proposed metrics extracted from service logs 
and the employed methods. 

3.6 Storage Service Interface 
Defines the methods that each storage service must implement in order to enable BoxBroker to 
access them. Moreover, the interface implementation makes possible to dynamically discover 
and instantiate services classes using reflection-oriented programming approach. Fig. 3 shows 
how BoxBroker's components and subcomponents interact between each othe. Furthermore, it 
describes the general process for a client request. 

 

Fig. 3. BoxBroker Framework’s Components Interaction. 
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3.7 BoxBroker API 
The implemented REST API transforms BoxBroker in a standalone service solution. 
Moreover, it extends BoxBroker’s architecture and domain models. An Authentication 
Controller component is integrated in order to provide a token-based authentication process. 
This extra component allows clients to register, authenticate and get an authorization token to 
access the API endpoints. On the other hand, domain models were extended in order to allow 
clients to define their own service credentials, policies, and associated files.  

4. Policy-based Storage Service Selection 

4.1 Problem Description 
We want to distribute and replicate data across multiple storage services, based on dynamic 
and personalized policies. Each storage service is defined by a group of numerical metrics. A 
policy specifies the importance of each metric to store a specific data. Finally, a number of 
desired replicas is provided. 

A storage service has a finite number of metrics which define it. There is a vast range of 
heterogeneous metrics useful for analyzing the best match to store the data. Nevertheless, their 
values have not only different ranges but also opposite meaning, causing difficulties in their 
comparison. For example, availability and cost, obviously they have a different range of 
values and also opposite meaning. In the case of availability, you will choose the highest 
possible. On the contrary, you would like to minimize the cost. Such heterogeneity requires 
normalization in order to have all the characteristics lying between the same range [0, 1] [40]. 
Moreover, we assume that all the metrics are defined as; the smaller the value the better the 
service. To illustrate, the availability can be defined as the probability of failure. As the 
probability of failure decreases the availability increases.   

On the other hand, we have a set of policies which help us to choose the correct group of 
storage services for our data. Each policy is defined by two properties. First, a condition to 
match a policy with the data. Second, a selection factor order, which defines a weight for each 
service's metric based on importance order, where the first order has the highest weight and so 
on. 

4.2 Mathematical Definition 
Suppose we have a set of storage services 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} , a set of policies 𝑃𝑃 =
{𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} and a replication factor 𝑟𝑟 . We want to select a subset 𝑅𝑅 of size 𝑟𝑟 from 𝑆𝑆, where 
the distances between 𝑃𝑃 and 𝑅𝑅 are minimized. 

4.2.1 Storage Service Model 

Each service 𝑠𝑠𝑖𝑖 is represented by a vector 𝐾𝐾𝑆𝑆𝑖𝑖 = �𝜙𝜙1𝑖𝑖 ,𝜙𝜙2𝑖𝑖 , … ,𝜙𝜙𝑘𝑘𝑖𝑖 �, where 𝜙𝜙𝑗𝑗𝑖𝑖  denote the 𝑗𝑗-th 
metric’s value for service 𝑠𝑠𝑖𝑖. 

𝜙𝜙𝑗𝑗𝑖𝑖  ∈ [0, 1]#(1)  

4.2.2 Policy Model 

Similarly, a policy 𝑝𝑝𝑖𝑖  is defined by a vector 𝐾𝐾𝑃𝑃𝑖𝑖 = �𝜑𝜑1𝑖𝑖 ,𝜑𝜑2𝑖𝑖 , … ,𝜑𝜑𝑘𝑘𝑖𝑖 � . The 𝑗𝑗 -th metric’s 
importance order based on policy 𝑝𝑝𝑖𝑖 is denoted by 𝜑𝜑𝑗𝑗𝑖𝑖 . 

 



350                                       Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation 

𝜑𝜑𝑗𝑗𝑖𝑖  ∈ {1, 2, … ,𝑘𝑘}#(2)  

4.2.3 Metrics Weight 
The metrics weight is exponentially distributed according to its importance order. The weight 
of metric 𝑗𝑗 based on policy 𝑝𝑝𝑖𝑖 is defined by the equation 3, where λ is named weight factor, see 
section 7.2.2 for more details. 

𝑓𝑓𝑊𝑊(𝑝𝑝𝑖𝑖, 𝑗𝑗) = 𝑒𝑒−𝜆𝜆𝜑𝜑𝑗𝑗
𝑖𝑖
#(3)   

Total weight of a metric 𝑗𝑗 according to all policies 𝑃𝑃 is expressed as: 

𝑓𝑓𝑊𝑊(𝑃𝑃, 𝑗𝑗) = ∑ 𝑓𝑓𝑊𝑊(𝑝𝑝𝑖𝑖, 𝑗𝑗)𝑚𝑚
𝑖𝑖=1 #(4)   

4.3 Proposed solution 
To solve the services selection problem, we modeled it as a k-Nearest Neighbors problem. 
Usually, k-NN is used to categorize a query point depending on its neighbors [41]. For our 
purpose, the query point 𝑄𝑄  is the center of the space, where all the storage services 
dimensional metrics are maximized. k (number of neighbors) is determined by 𝑟𝑟 (replication 
factor). For distance measurement, we used a weighted Euclidean distance [40], where each 
feature is scaled by the corresponding weight based on the policies. 

𝐷𝐷(𝑠𝑠𝑖𝑖) = �∑ �𝜙𝜙𝑗𝑗𝑖𝑖 × 𝑓𝑓𝑊𝑊(𝑃𝑃, 𝑗𝑗)�
2

𝑘𝑘
𝑗𝑗=1 #(5)   

Finally, the algorithm order by distance and takes 𝑟𝑟 nearest services. Algorithm 1 shows 
policy-based storage service selection algorithm implementation. 

Algorithm 1. Policy-Based Storage Service Selection 
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5. Log Analysis  
Logs have been used as an important source of information for organizations in order to 
quickly identify and resolve issues [26]. Other approaches about log analysis benefits were 
discussed in section 2. We are proposing the integration of log analysis in Storage Service 
Federation Environment with the purpose of evaluating services availability, performance, 
and workload. The proposed analysis transforms our static services profiles into dynamic 
profiles that change in time, helping our selection algorithm to take up-to-date decisions. This 
analysis is done periodically and the number of log records used on it depends on a 
pre-configured time interval, e.g. daily, weekly, monthly, etc. Table 3 describes the relevant 
log attributes for our analysis. 

Table 3. Relevant Log Attributes 

Attribute Description 
LogTime Date and time when the log record was created. 
LogLevel 
 

Logs are tagged with ”ERROR” if an error occurred or ”INFO” 
if not. 

ServiceId Services unique identification 
RequestType 
 The requested operation type.  

RequestTime Date and time when the request was sent to the service. 
ResponseTime 
 Date and time when the response of the service was received. 

FileSize 
 The size(bytes) of the file involved in the requested.  

ServiceProtocol 
The Protocol utilized to establish a communication with the 
service (e.g. HTTP, FTP, WebDAV, ...). 

ErrorCode An error code if it exists. 
ErrorMessage An error message if it exists. 

5.1 Service Availability Analysis 
In order to calculate the service’s availability score, we used the equation 6, which was 
described by Marcus and Hal in [42]. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represents the mean time between failures and 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represents the mean time to repair or recover from a failure. 

𝐴𝐴 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
#(6)  

Our environment can generate errors that we do not want to take into consideration for 
availability score computation. Per instance, some services have a limit on the file size that can 
be written through their APIs/interfaces, or the credentials are not correct/expired. These 
errors and others should not impact service availability because those errors are caused by our 
framework or the clients. In order to minimize this scenario, service limitations must be 
specified in its profile. We are proposing two discrimination methods for selecting the errors 
that affect service availability. The First method is based on the combination of 
ServiceProtocol and ErrorCode, a dictionary of protocols and error codes can be configured in 
BoxBroker to specify the errors that must be considered in availability calculation.  

Table 4 shows some proposed error codes. The second method is based on text sentiment 
analysis which is applied to ErrorMessage in the case of ServiceProtocol and ErrorCode 
absence. For text sentiment analysis we are using Naive Bayes classifier to measure error 
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message polarity [43] where negative ErrorMessage are considered in availability scores. 
Table 5 shows some useful training phrases. Errors in Table 4 were also used for training 
tagged as negative. Basically, we want to select errors associated to off-line service and avoid 
errors caused by badly formed requests. 

Table 4. Error Codes Related with Availability 

Protocol Code Description 

HTTP /  
WebDAV 

423 Resource Locked 
429 Too Many Requests 
500 Internal server error 
501 Not Implemented 
502 Bad Gateway 
503 Service Unavailable 
504 Gateway Timeout 

FTP 

421 Service Not Available 
425 Can’t Open Data Connection 
426 Connection   Closed; Transfer Aborted. 
434 Requested Host Unavailable. 
451 Requested Action Aborted.  Local Error in Processing. 
534 Could Not Connect to Server. 

10060 Cannot Connect to Remote Server. 
10068 Too Many Users, Server is Full. 

Table 5. Sentiment Training Set Sample 

Phrase Polarity 
Network Authentication Required Positive 
Internal issue Negative 
Bad Request Positive 
Insufficient Storage Positive 
Unauthorized Positive 
Failed to write file to disk Negative 
Method Not Allowed Positive 
Unsupported Media Type Positive 
Unable to save or download files Negative 
Server error Negative 
Bandwidth Limit Exceeded Positive 
User is over storage quota Positive 
Invalid username or password Positive 
Requested action not taken. File name not allowed Positive 

5.2 Service Performance Analysis 
Read and write operations are used to measure service performance, which is defined as the 
average number of megabytes processed by a service in a second (MB/s). Equation 7 is applied 
for computing read and write performance based on a set of logs. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
#(7)  

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018                                 353 

5.3 Service Workload Analysis 
Service workload is also measured utilizing read and write operations, defined as the 
percentage of bytes processed for a service based on total bytes processed for the system in a 
period of time. Equation 8 is applied for computing read and write workload based on a set of 
logs. 

𝑊𝑊𝑠𝑠𝑖𝑖 =
∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∈  𝑠𝑠𝑖𝑖
∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∈ 𝑆𝑆

#(8)  

6. File Blocks Allocation Method 
BoxBroker offers the option of using a data striping technique in order to improve 
performance and throughput. Moreover, segmenting a file in blocks and distributing them 
across multiple services can be used as a security approach, as the file is spread across multiple 
locations it can not be read without all blocks and the correct order. BoxBroker implements a 
RAID 0 like striping algorithm, where consecutive blocks are stored in different services. 
Since RAID 0 does not provide fault tolerance mechanism, we extended it adding a replication 
factor 𝑟𝑟 , which indicates how many copies of each block we would like to store. This 
mechanism allows BoxBroker to recover a file even when (𝑟𝑟 − 1) services have failed. 

 

Fig. 4. File Blocks Allocation Method 

Fig. 4 shows a graphical representation of our proposed file blocks allocation method. File 
A is divided in eight blocks, blue blocks represent the original blocks, green ones represent the 
first replica, and the red ones the second replica. The set of blocks 𝐵𝐵𝑠𝑠𝑖𝑖 allocated on a service 𝑠𝑠𝑖𝑖 
can be expressed with the equation 9, where 𝑆𝑆 represents the set of disposable services, 𝐵𝐵 file 
blocks set, and 𝑏𝑏 block number. Furthermore, 𝐵𝐵𝑠𝑠𝑖𝑖 is replicated in(𝑟𝑟 − 1) different services. 
𝐵𝐵𝑠𝑠𝑖𝑖 is replicated in 𝑠𝑠𝑖𝑖+𝑗𝑗 if 𝑖𝑖 + 𝑗𝑗 ≤ |𝑆𝑆| or 𝑠𝑠𝑖𝑖+𝑗𝑗−|𝑆𝑆| if 𝑖𝑖 + 𝑗𝑗 > |𝑆𝑆| for all 𝑗𝑗 ∈ {1,2, … , 𝑟𝑟 − 1} and 
2 ≤ 𝑟𝑟 ≤ |𝑆𝑆|.  
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𝐵𝐵𝑠𝑠𝑖𝑖 = �𝑏𝑏 ∈ 𝐵𝐵: 𝑖𝑖 = 𝑏𝑏 − �
𝑏𝑏

|𝑆𝑆|� ∗
|𝑆𝑆|�#(9)  

7. Experiments & Results 

7.1 Log Analysis 
In order to evaluate the functionality of the Storage Service Analyzer, we developed a client 
application that generates requests through our framework to four storage services providers 
Box, Dropbox, GoogleDrive, and OneDrive denoted as 𝑆𝑆1,  𝑆𝑆2,  𝑆𝑆3 and 𝑆𝑆4 respectively. Box 
and GoogleDrive have a object storage architecture while Dropbox and OneDrive use a 
filesystem architecture. The generated requests were made of multiples reading and writing 
transactions with randomly selected files of various sizes. Collected logs were used to 
calculate services availability, performance, and workload. Moreover, an overall analysis and 
comparison between services are provided. Furthermore, the results shown in this section are 
used to evaluate our selection model in section 7.2. The experiments were conducted for a 
period of 20 days and the results were divided into four sub-periods of five days each, 
𝑇𝑇1(1− 5),  𝑇𝑇2(6− 10),  𝑇𝑇3(11− 15) and 𝑇𝑇4(16− 20). 

7.1.1 Availability Analysis 
Availability analysis is done according to equation 6. The results scores are shown in Fig. 5. 
We can see that all the services have at least one period with a score equal or greater than 
99.9%. Service 𝑆𝑆2 has availability average over 99.9%, it means approximately eight hours 
or less of downtime every year. 𝑆𝑆3 has an average of 98.8%, meaning at least 4.38 days of 
downtime per year. 𝑆𝑆4 and 𝑆𝑆1 have an average around 99.7% for 24 hours or less of downtime 
per year. However, 𝑆𝑆4 achieved more than 99.99% in periods 𝑇𝑇1 and𝑇𝑇4  transformed as 52.5 
minutes of downtime each year. According to the results, the difference on availability score 
seems very small, nevertheless, the downtime is quite significant. It should be noted that these 
results are based on randomly generated errors. 

 
Fig. 5. Availability Analysis Results 

7.1.2 Performance Analysis 
Fig. 6 and Fig. 7 show services read and write performance results respectively. In the results 
can be appreciated that the performance keeps the trend in all periods. Moreover, we can see 
the fact that if a service has the best write performance doest not necessarily means that it 
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would have the best read performance, or vice-versa. Despite that 𝑆𝑆3 and 𝑆𝑆4are battling for the 
best read performance, 𝑆𝑆4 clearly has the best write performance. 

 
Fig. 6. Read Performance Analysis Results 

 
Fig. 7. Write Performance Analysis Results 

7.1.3 Workload Analysis 
As our transaction simulator sent requests to all services the workload is almost balanced. 
Read and write workload results are shown in Fig. 8 and Fig. 9 respectively. For both cases, 
the workload percentage oscillate between 24.5 and 25.5. 

 
Fig. 8. Read Workload Analysis Results 
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Fig. 9. Write Workload Analysis Results 

7.2 Policy-based Storage Service Selection 
In this section, we are going to demonstrate how our selection algorithm works using 𝑇𝑇4 
availability and performance results from section 7.1, together with other metrics such as cost 
and available space. However, as we defined in section 4.1, all metrics must be represented as; 
the lower the value the better the service. Therefore, we redefined the metrics as: 

• Availability, is used as the percentage of time that the service was unavailable. It is 
calculated as 100 −  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 . The lower the time the better the service’s 
availability. 

• Write and read performance, are represented as the average time in seconds for 
processing 1MB of data. They are calculated as 1 ⁄ (𝑅𝑅|𝑊𝑊 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). The lower 
the time the better the service's performance. 

• Cost, the price of storing 1GB data. The lower the price the cheaper the service. 
• Used space, the percentage of space that is currently used. 

Table 6 lists four services and their metrics values. Consider measuring the distances of each 
service using this metrics values. The contribution of cost and space in the distance calculation 
is minimum, we can say that the distance is practically determined by performance and 
availability. Fig. 10 illustrates graphically the disparity between metrics. Seeing that each 
metric has its own range [𝑎𝑎, 𝑏𝑏], some form of normalization is required in order to balance out 
the contributions in the distance calculation [40]. 

Table 6. Storage Services Profiles 

 Services 
S1 S2 S3 S4 

Availability (%) 0.992 0.025 1.511 0.007 
Read Perf. (s/MB) 0.569 0.466 0.370 0.348 
Write Perf. (s/MB) 0.530 0.833 0.313 0.211 
Cost (USD/GB) 0.011 0.010 0.009 0.007 
Used Space (%) 0.022 0.037 0.054 0.090 
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Fig. 10. Not Normalized Service Profiles 

 

7.2.1 Metrics Normalization 
In order to balance metrics contribution in distance calculation, all metrics are scaled to a 
common range [0, 1] [40]. We assumed that for all metric the lower bound 𝑎𝑎 = 0 and the 
upper bound 𝑏𝑏 =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) respectively. The normalized metric’s value 𝑧𝑧  is 
determined by the equation: 
 

𝑧𝑧 =
(𝑥𝑥 − 𝑎𝑎) × (1 − 0)

𝑏𝑏 − 𝑎𝑎
=
𝑥𝑥
𝑏𝑏

#(10)  

 
Table 7 and Fig. 11 show the services profiles after applying the normalization. Comparing 
Fig. 10 and Fig. 11, we can say that each metric has equal contribution in order to measure the 
service’s distance. 
 

Table 7. Normalized Storage Services Profiles 

 Services 
S1 S2 S3 S4 

Availability (%) 0.656 0.017 1.000 0.005 
Read Perf. (s/MB) 1.000 0.818 0.650 0.611 
Write Perf. (s/MB) 0.636 1.000 0.376 0.253 
Cost (USD/GB) 1.000 0.876 0.864 0.604 
Used Space (%) 0.244 0.411 0.600 1.000 
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Fig. 11. Normalized Service Profiles 

7.2.2 Weight Factor Selection 
After defining our services profiles, the next step is to select how metrics weights are going to 
be distributed. In equation 3 we defined an exponential formula for distributing the weights. 
This subsection shows the effect of different weight factor values. ↑ and ↓ denote increment 
and decrement respectively. 

Table 8. Weight Factor Effect 

 Weight factor 
Increase Decrease 

Order’s weight ↓ ↑ 
Weights distribution ↓ ↑ 
Weights difference ↑ ↓ 

 

 
Fig. 12. Weight Distribution for Distinct Wight Factors 
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The effect of weight factor is described in Table 8. As λ increase, the weight of each order 
decrease. In the same way, the weights are less distributed, this means that weights are more 
concentrated in the first orders. Nevertheless, weights difference increase as λ increase. Fig. 
12 shows the weight distribution for  𝜆𝜆 ∈  {1, 0.7, 0.5, 0.4, 0.3}. In Fig. 12 we also can 
graphically see what Table 8 expressed. Let’s take 𝜆𝜆 = 1 and  𝜆𝜆 = 0.5 as an example: 

• The first order weights are 0.37 and 0.61 for 𝜆𝜆 = 1 and  𝜆𝜆 = 0.5 respectively, so as λ 
decrease, the orders weights increase. 

• For 𝜆𝜆 = 1 only the first 2 orders have a weight bigger than 10%, however, for 
𝜆𝜆 = 0.5 the first 4 order have a weight bigger than 10%, so as λ decrease, the weights 
are more distributed. 

• The weight for order 𝑗𝑗 is a percentage of the weight for order 𝑗𝑗 − 1. These percentages 
are approximately 37% and 61% for 𝜆𝜆 = 1 and  𝜆𝜆 = 0.5 respectively. In the same 
way, we can say that the difference between two orders weights is 63% for 𝜆𝜆 = 1 and 
39% for 𝜆𝜆 = 0.5. So as λ decrease, the weights difference also decrease. 

In summary, weight factor selection depends on the number of metrics we want to take into 
consideration. Then, the difference you want between weights. Finally, the weights magnitude 
you want. Based on the description above, for our experiments we selected a weight factor: 

𝜆𝜆 = 0.4#(11)  

7.2.3 Policies Definition 
At this point, we have defined our services profiles, which are shown in Table 7, and the 
weight factor we are going to use (equation 11). The next step is to define some policies to 
apply in our experiments. Therefore, four policies are defined to match next conditions: 

• 𝑃𝑃1 →data that is usually modified and read, where write/read performance and 
availability are the priority. For example, work in progress documents (text, code, 
presentation, ...). 

• 𝑃𝑃2 → one-time or rarely write but usually read data. As a result, the most important 
metrics are read performance and availability. For example, media files (music, 
videos, pictures) and some PDF documents could fix in this category. 

• 𝑃𝑃3 → one-time or rarely write and read data. For example, data backups. Therefore, 
more importance is given to available space and cost. 

• 𝑃𝑃4 → less important data. Data that maybe never will be used again but you have to 
keep it. For this data category, the cost is the most important metric. 

Table 9 defines our set of policies and its metric's importance order. Metrics weights based 
on each policy are shown in Fig. 13. 

Table 9. Policies Metrics Order Definition 

 Policies 
P1 P2 P3 P4 

Availability  1 1 3 5 
Read Performance 3 2 4 4 
Write Performance 2 4 5 3 
Cost  4 3 2 1 
Used Space 5 5 1 2 
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Fig. 13. Policies Metrics Weights 

7.2.4 Storage Service Selection 
Finally, we have all the pieces to apply our algorithm and select the best storage services. With 
the services profiles in Table 8 and policies weights in Fig. 15 we can compute each service’s 
distance using equation 5. Then, services are ordered by distance and select the desired 
number of replicas. Fig. 14 shows services distance for each of the policies defined in Table 9.  
Based on the distance, services selection order are as follows: for 𝑃𝑃1 and 𝑃𝑃2 services selection 
order is [𝑆𝑆4,  𝑆𝑆2,  𝑆𝑆1,  𝑆𝑆3], for 𝑃𝑃3 is [𝑆𝑆2,  𝑆𝑆1,  𝑆𝑆3,  𝑆𝑆4], and for 𝑃𝑃4 [𝑆𝑆4,  𝑆𝑆3,  𝑆𝑆2,  𝑆𝑆1]. 

 
Fig. 14. Services Distance Based on Policies 

Now suppose we have some data that match more than one policy. For example, policies 𝑃𝑃3 
and 𝑃𝑃4 are very similar. Let us say that our data match 𝑃𝑃3 and 𝑃𝑃4. Accordingly equation 4, the 
total metric’s weight is defined as the sum of each policy metric’s weight. Table 10 shows the 
new metrics weights for this special case. Based on the new weights, services selection order 
result is [𝑆𝑆2,  𝑆𝑆1,  𝑆𝑆3,  𝑆𝑆4]. Services distance are shown in Fig. 15. 
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Table 10. Multi-Policy Metrics Weights 

 Policies 
P3 + P4 

Availability  0.437 
Read Performance 0.404 
Write Performance 0.437 
Cost  1.120 
Used Space 1.120 

 

 
Fig. 15. Services Distance Based on 𝑃𝑃3 and 𝑃𝑃4 

7.2.5 Services Selection Time 
The time complexity of our algorithm is defined by equation 12. 𝑘𝑘 represent the number of 
metrics, 𝑚𝑚 number of policies and 𝑛𝑛 number of services. Therefore, 𝑘𝑘𝑘𝑘 represent the time to 
compute total metrics weight, 𝑘𝑘𝑘𝑘 time to calculate the Euclidean distance for each service and 
𝑛𝑛 log𝑛𝑛 time to order services by the distance. 
 

𝑂𝑂(𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑘𝑘 + 𝑛𝑛 log𝑛𝑛)#(12)  
 
Fig. 16, Fig. 17 and Fig. 18 show the selection time for different cases. Moreover, after the 

number of services 𝑛𝑛, the results show that 𝑘𝑘 is the parameter that impacts the most the 
selection time, because it also affects two parts of the time equation (equation 12). Therefore, 
selecting the correct amount of metrics to define our services profiles becomes an important 
task. However, Fig. 18 shows a more realistic scenery, where we have a fixed number of 
services defined by a fixed number of metrics and only the amount of policies changes 
accordingly to the data. Fixing 𝑘𝑘 and 𝑛𝑛 two parts of the time equation (equation 12) become 
constants and we can achieve a liner selection time, shown in Fig. 18. 
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Fig. 16. Selection time with a fixed number of policies (10) and services ∈  {5, 10, 15, 20,30}, 

varying the number of metrics k. 

 
Fig. 17. Selection time with a fixed number of services (10) and policies ∈  {5, 10, 15, 20,30}, 

varying the number of metrics k. 

 
Fig. 18. Selection time with a fixed number of metrics (10) and services ∈  {5, 10, 15, 20,30}, 

varying the number of policies m. 

In comparison to [14, 21, 22, 23, 24, 25] approaches, where the selection is based on fixed 
metrics, our proposal can be used with any number of metrics defined by the clients. In 
addition, unlike these approaches our algorithm allows clients to change the importance of 
each metric depending on the data. [16] proposes a rule-based service selection algorithm, but 
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clients must categorize each file in order to match the policies, while our approach 
automatically matches the files based on their attributes. Furthermore, we create a 
straightforward policy model based on metrics order, in contrast to [16], where the weight of 
each metric must be specified. 

Table 11 and Fig. 19 compare our selection algorithm with the solutions presented by Yang 
and Ren [14] (Virtual Framework for Cloud Storage Service - VCSS) and Chang et al. [22] 
(Probability-based Service Selection - PB). Since these algorithms do not support policies, we 
compare them with our algorithm using only one policy. Moreover, they only use two metrics 
for the selection process. Yang and Ren [14] selection is based on performance and available 
space. Chang et al. [22] selection is based on availability and cost. For the first comparison test, 
we set the number of metrics to two. Table 11 shows that (PB) has the worst performance, for 
that reason (PB) was removed in Fig. 19, that allow us to see better the comparison between 
(VCSS) and our approach. Fig. 19 shows that BoxBroker selection algorithm performs better 
than (VCSS) with a basic setting which is a fair comparison. However, with a more complex 
configuration of 10 metrics and 1000 policies, our algorithm can make a decision over 500 
services in less than a millisecond. 

Table 11. Algorithms Execution Time (ms) 

Algorithms n=10 n=50 n=100 n=500 
BoxBroker(m=1,k=2) 0.0094 0.0165 0.0321 0.1563 
BoxBroker(m=1000,k=10) 0.5176 0.5182 0.5607 0.9845 
VCSS [14] 0.0092 0.0286 0.0871 0.2708 
PB [22] 0.0680 5.3368 16.2033 750.4673 

 

 
Fig. 19. Comparison of Algorithms Execution Time 

7.3 File Striping Performance 
In order to evaluate the performance of our framework parallel processing with striped files vs 
no-striped files, we used multiple file size striped in different block size. Moreover, we 
evaluated read, write, and delete performance for each file and block size. Fig. 20 and Fig. 21 
present data write and read throughput in MB/s respectively. Fig. 22 shows data deletion 
performance represented as the required time in seconds to delete the entire file. The results 
from the conducted experiments demonstrate that the combination of file striping and our 
framework parallel processing can improve performance and data throughput. Note that this 
results can vary depending on BoxBroker server processing capacity and network speed. 
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Fig. 20. File Striping Write Performance 

 
Fig. 21. File Striping Read Performance 

 
Fig. 22. File Striping Delete Performance 

All the experiments in section 7 were done using a 64-bit Windows 10 Pro PC with an Intel Core 
i7-6700HQ CPU @ 2.6GHz, and 16 GB of RAM. 
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8. Conclusion & Future Work 
We have presented BoxBroker, a policy-driven storage service federation framework that 
allows the integration of multiple storage services into a seamless storage pool. BoxBroker 
also implements a policy-based service selection algorithm in order to automate the data 
distribution and retrieval. A straightforward policy model was proposed to empower clients 
with the possibility of defining their own data dispersion rules. A service evaluation method 
for allowing dynamic decisions was implemented. Furthermore, a practical demonstration of 
our approach was shown and a comparison with other approaches. 

Future works are led to solving the limitation of storage metric definition in our algorithm, 
allowing the definition of positive and negative metrics; some metrics must be minimized 
while others must be maximized. At the same time, we are looking forward to the 
implementation of a data migration component that takes advantage of our service analysis, 
achieving services load balancing, and I/O intensive data reallocation in high-performance 
services. 
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