
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 340
Copyright ⓒ 2018 KSII

BoxBroker: A Policy-Driven Framework for
Optimizing Storage Service Federation

Rene Heinsen1, Cindy Lopez1 and Eui-Nam Huh1

1 Department of Computer Engineering and Science, Kyung Hee University, 1732, Deogyeong-daero,
Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea

[e-mail : reneheinsen@khu.ac.kr, cindylopez@khu.ac.kr, johnhuh@khu.ac.kr]
*Corresponding author: Eui-Nam Huh

Received April 19, 2017; revised June 23, 2017; accepted September 3, 2017;

published January 31, 2018

Abstract

Storage services integration can be done for achieving high availability, improving data access
performance and scalability while preventing vendor lock-in. However, multiple services
environment management and interoperability have become a critical issue as a result of
service architectures and communication interfaces heterogeneity. Storage federation model
provides the integration of multiple heterogeneous and self-sufficient storage systems with a
single control point and automated decision making about data distribution. In order to
integrate diverse heterogeneous storage services into a single storage pool, we are proposing a
storage service federation framework named BoxBroker. Moreover, an automated decision
model based on a policy-driven data distribution algorithm and a service evaluation method is
proposed enabling BoxBroker to make optimal decisions. Finally, a demonstration of our
proposal capabilities is presented and discussed.

Keywords: Storage federation, Data distribution, Policy-driven, Log analysis, Parallel data
processing, Service evaluation

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant
funded by the Korea government(MSIT) (2015-0-00240,Cloud Storage Brokering Technology for Data-Centric
Computing Standardization) and the Energy Efficiency Technology Program of the Korea Institute of Energy
Technology Evaluation and Planning(KETEP) granted financial resource from the Ministry of Trade, Industry &
Energy, Republic of Korea (No. 20152020106310)

http://doi.org/10.3837/tiis.2018.01.017 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 341

1. Introduction

IT industry is facing enormous challenges regarding data storage and management, as a
consequence of the incredible volume of data that is being generated from all kind of sources
and formats. Moreover, every year data generation speed is exponentially increasing.
Approximately every two years, world's generated data is doubled [1]. For example, in 2013
the world’s generated data was around four zettabytes, by 2015 increased to nearly nine
zettabytes, and is expected to reach 40 zettabytes in 2020 [2]. In order to address this
phenomenon, storage vendors are developing innovative solutions, for example, cloud storage
[3, 4, 5], distribute file systems [6, 7, 8], enterprise storage [9, 10, 11], among others.
Nevertheless, enterprises often are forced to implement multiple storage solutions so they can
keep with the demand. As a result of heterogeneous architectures and management interfaces
on those storage solutions, having multiple implementations increases management cost and
complexity, as well as, preventing the interoperability between them.

Multiple storage solutions integration can be useful for improving data availability, security,
reliability, durability, and storage scalability to the expenses of increasing management
complexity. Storage Federation model purpose is to address management complexity in
multiple storage solution environments by providing a common management interface and
integrating rule-based decisions. In 2010, Vellante [12] defined Federated Storage as “the
collection of autonomous storage resources governed by a common management system that
provides rules about how data is stored, managed, and migrated throughout the storage
network”. In 2011, 3PAR Peer Motion software was released by Hewlett Packard Enterprise
in order to federate multiple 3PAR StoreServ systems [13]. The main benefits introduced by
3PAR Peer Motion where load balancing, non-disruptive data migration and lifecycle
management costs reduction. However, this software is limited to the use of 3PAR StoreServ
systems.

In this paper, we aim to face the challenges of file-based heterogeneous storage service
federation and the automated rule-based decision making. Our contributions can be
summarized as follows:
• We propose a storage service federation framework in order to integrate multiple

file-based heterogeneous storage services and provide a single control point with API
for fast application development.

• We define a policy model to easily create rules about how data is distributed and
replicated for optimal service selection based on predefined policies is proposed.

• A storage service evaluation method based on log analysis is proposed, with the
purpose of creating dynamic services profiles.

• A file striping mechanism is implemented that along with our framework parallel data
processing are able to improve performance and data throughput.

The rest of this paper is organized as follows; Section 2 analyses and discusses related work.
Section 3 introduces BoxBroker’s architecture and implementation details. Section 4 defines
BoxBroker’s decision algorithm. Section 5 describes our services evaluation method. Section
6 shows the implemented file striping mechanism. Section 7 presents conducted experiments
and results. Section 8 summarizes our contributions and recognizes future work.

342 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

2. Related Work
There are numerous storage federation approaches, most of them are focused on cloud storage
federation for preventing vendor lock-in and simplifying multiple accounts management.
Yang and Ren [14] provide a framework for federating open cloud storage services and the
selection model is purely based on service performance and available space. Vernik et al. [15]
present an on-boarding federation mechanism for adding a special layer on cloud storage
services allowing them to import data from other services. This approach requires certain
adaptability level from the cloud service provider becoming hard to implement. Libardi et al.
[16] propose a Multiple-cloud Storage Selection Framework modeled as a knapsack problem,
allowing them to select the best subset of providers in order to fulfill users requirements. Its
main limitation is the requirement of user input parameter selection for each file upload.
Janviriya et al. [17] approach consist in a Multiple Cloud Storage Integration Systems based
on RAID (Redundant array of independent disks) 0 stripping technology which improves
performance, storage capacity, and security. However, no fault tolerance mechanism is
proposed. Zhao et al. [18] propose a middleware that enables any end-user application to
automatically and securely stores files in multiples cloud storage accounts. Shah et al. [19]
implement a multi-cloud storage integration service for personal cloud storage users. Their
approach presents multiple storage accounts in a single interface but lacks integration as a
single storage pool. Malensek et al. [20] propose a private and public cloud federation method
in order to improve queries throughput in large datasets.

In addition, several approaches referred to Service Selection and Data Distribution were
studied. Esposito et al. [21] propose three different methods for selecting the best service set in
order to maximize the quality of service and minimize cost. The three methods utilized are
based on Fuzzy Logic, Theory of Evidence and Game Theory. Chang et al. [22] use a
probability-based algorithm in order to select the best coordination of services that achieved
the maximum availability based on a given budget. Other studied approaches regarding data
allocation are [23, 24, 25], focusing on load balancing in heterogeneous storage environments.
In most of the mentioned related works, only one or two aspects of storage are considered. For
example, [21] and [22] mainly focus on availability and cost, while [23, 24, 25] focus on
capacity, access frequency, and performance.

Other investigated works were focused on log and text sentiment analysis. Log files have
been an important source of information to organizations in order to quickly identify issues
[26]. Mho et al. [27] propose a multi-stage analysis architecture using pattern matching,
machine learning, and log analysis in order to effectively detect SQL-injection attacks. Grech
and Clough [28] propose a method based on Jaccard coefficient, with the purpose of
evaluating log clustering analysis stability. Chen et al. [29] propose a cloud security
framework based on log analysis using security audit system standards. On the other hand,
sentiment analysis has been used to analyze text's polarity in social media in order to define
whether the text is positive or negative based on specifics topics [30]. Hamzehei et al. [30]
propose a Semantic Scoring Sentiment Analysis Service, which evaluates the scalability and
efficiency of multiple sentiment analysis methods using a large volume of microblogs.

Our work proposes a new added value to storage federation consisting in the possibility of
federating different kinds of file-based storage services including; cloud storage, distributed
file systems, object storage, ftp, among others. In addition, our work relies on a policy-based
data distribution algorithm that allows the definition of any number of storage aspects in order
to select the best services to efficiently fulfill clients requirements. Moreover, a service
analysis method based on logs is provided for periodic service evaluation and maintaining

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 343

dynamic service profile. In addition, our work relies on a policy-based data distribution
algorithm that allows the definition of any number of storage aspects in order to select the best
services to efficiently fulfill clients requirements. Moreover, a service analysis method based
on logs is provided for periodic service evaluation and maintaining dynamic service profile.
Table 1 shows a comparison between BoxBroker and other approaches.

Table 1. Related Work Comparison Table

 Approaches
[14] [16] [17] [18] BoxBroker

Storage
aspects used
for selection

Availability x o x x o
Performance o o x x o
Cost x o x x o
Available space o x o o o
Allows definition of
other aspects? x o x x o

Allowed
storage types

Cloud storage o o o o o
Non-cloud storage x x x x o

Type of
policies (none/static/dynamic) none static none none dynamic

Service
analysis Service analysis x x x x o

Data
protection

Striping x x o o o
Encryption x o x o x

3. BoxBroker: Storage Service Federation Framework
This section describes our proposed framework. BoxBroker allows clients to work across
multiple file-based storage services like a single one. It converts distinct storage services in a
seamless pool and offers a single control point. On the other hand, it integrates an intelligent
policy-driven data distribution algorithm and a log-based service analysis, in order to make
optimal and automated decisions. Moreover, it enables clients to modify its normal behavior
creating their own policies.

The main goal of our framework is to provide a federated storage layer for fast application
development on top of it while giving enough customization power. BoxBroker can work with
any file-based storage service through Storage Service Interface implementation. This allows
clients to integrate our framework with their desired services, instead of restricting them to a
fixed number of implemented services. Furthermore, it supports a single service multiple
accounts integration. BoxBroker accepts services with three type of authentication: none,
user-password and OAuth 2.0 [31]. Some examples of supported services are: cloud storage,
distribute file systems, network file systems, object storage (parent-child file storage), ftp,
among others.

BoxBroker can be configured to store or not the location of the files. If storing file location
is set off, means that it acts like a middleware between clients and storage services. Storing file
hierarchy is delegated to clients, giving them more flexibility in order to choose the suitable
environment for the task. Nevertheless, file location storage is not required.

344 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

We also propose a REST API wrapper for our framework. it provides a token-based
authentication process, allowing clients to register, authenticate and request authorization
token to call the API endpoints. More details in Section 3.7.

BoxBroker’s architecture is shown in Fig. 1. The framework is composed of six main
components: Policy Engine, OAuth Manager, Metadata Manager, Storage Manager, Storage
Service Analyzer, and Storage Service Interface, which are described in sections 3.1 to 3.6
respectively.

Fig. 1. BoxBroker Framework's Architecture

3.1 Policy Engine
This component can be considered as BoxBroker’s brain. Therefore, it is responsible for
decision making, services selection, request verification, and request complementation. In
order to make automated decisions a policy-based data distribution algorithm is implemented
(refer to Section 4 for more details). Three different policy models are implemented. The first
model, which is specified in section 4.2.2, defines the importance order for services profiles
metrics. The second one specifies the number of replicas for a given condition. This second

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 345

model allows clients to define a different number of replicas for distinct data. The third model
indicates if the file must be striped and specifies the blocks size. Policy Engine is composed of
three sub-components:

3.1.1 Request Interceptor
Is responsible for verifying and complementing each request before sending it to the Storage
Manager. In order to complement a request, services credentials must be included. Therefore,
all request must be verified for this component. Request Interceptor’s obligations can be split
into two blocks:

• Obtaining Credentials, in a case of policy-applicable request this process gets the
services credentials from Metadata Manager for the selected services by Service
Selector and Matching Policies Verifier. For example, writing a file or retrieving a
replicated file, in both a decision must be taken. On the other hand, for a not
policy-applicable request, meaning the request must be sent to all services or a
specific service, no decision is required. For example, reading a not replicated file or
getting the available space.

• Complementing Request, integrates services credentials with the original request and
sends it to Storage Manager. Furthermore, in the case of OAuth 2.0 credentials, these
are sent to OAuth Manager for verification before integrating them with the request.

3.1.2 Matching Policy Verifier
Is in charge of verifying if any policy condition matches with the current file. First, active
policies are requested to Metadata Manager. Each policy condition is stored as string
expression, for example, (File.Size >= 12500000 AND File.Size <= 62500000) OR
File.TypeMatch("(audio|video)/\S+"), Table 2 shows policy’s condition allowed operators.
The second step is to parse those conditions into binary expression trees [32], as shown in Fig.
2. Moreover, expression trees are compiled in order to create executable rules [33]. Then,
policies, where their rule returns a match, are selected. Because each policy is independent of
the others, a parallel processing technique is used for policies verification. As we mentioned
before, there are three kinds of policies, importance order, replication, and file striping policies.
Matching multiple importance order policies is allowed. However, in the case of matching
multiple replication or file striping policies, the last created policy is selected. Finally,
matching policies are given to Service Selector.

Table 2. Policy Condition Allowed Operators

Type Operator Description

Relational >, <, >=, <=
112 Greater than, Less than, Greater than or equal to, Less
than or equal to [34]. Allowed for File.Size only.

Equality ==, != Equal to, Not equal to [34]. Allowed for all properties.
Conditional AND, OR, &&, || Conditional AND, Conditional OR [34]
Unary ! Logical negation [34].

Special

Contains("xxx")
Verify if a specified substring occurs withing the property.
Allowed for File.Name and File.Type [34].

TypeIn("xxx,yyy")
Verify if the type of the file is equal to any of the specified
types. Types are specified in a comma separated string. It
must be applied to File instead of File.Type.

346 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

TypeMatch("xxx") Verify if the type of the file matches a regular expression. It
must be applied to File instead of File.Type.

NameMatch("xxx") Verify if the name of the file matches a regular expression.
It must be applied to File instead of File.Name.

Fig. 2. Parsed Expression Tree

3.1.3 Service Selector
Is responsible for selecting the best group of services according to a set of policies and a
replication factor. Service Selector implements a policy-based service selection algorithm
widely described in Section 4. If a file is set to use striping technique the blocks are distributed
and replicated across all services, see Section 6 for more details. In the case of file storing
request, an extra request is generated for getting services available space. Services without
enough available space are discarded from the selection process. Furthermore, if no policies
are provided service selection is purely based on the available space. On the other hand, for
replicated file retrieving request and no policies provided service selection is random.

3.2 OAuth Manager
This component is designed for allowing the implementation of services that used OAuth 2.0
authentication protocol, mostly Cloud Storage [31]. Service profiles using OAuth 2.0 protocol
must specify ClientId, ClientSecret, Scope, OAuth Url, OAuth Url extra parameters, Token
Url, and Support Refresh Token parameters in order to enable OAuth Manager to follow the
authentication flow. OAuth Manager has two sub-components:

• Authentication Url Builder, is responsible for constructing an OAuth authentication
Url based on a given service's profile and the desired redirect Url. Moreover, it verifies
if the constructed Url is valid.

• Token Manager, is the component responsible for requesting, refreshing and
canceling services access tokens.

3.3 Metadata Manager
Defines storage services, policies, and file hierarchy domain models [35]. Moreover,
implements an access interface to allow other components retrieve, create and modify models
information. The component uses Microsoft Entity Framework code-first approach, which is a
domain driven design technology focused in domain classes creation instead of database
design [36]. Using Entity Framework enables client applications the possibility of easily

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 347

extending our domain models by creating new domain classes or overwriting the existing
ones.

3.4 Storage Manager
It is a centralized storage resource management component. It exposes an interface to access
multiple storage service resources from a single point. Moreover, it implements parallel
processing technique to access multiple services concurrently and improve the execution time.
Storage Manager uses reflection-oriented programming in order to dynamically create and
access services implementation classes [37]. It is composed of three sub-components:

• Virtual Storage Resource Interface, exposes a single access point converting all the
distinct storages services in a seamless storage pool. The methods are divided into two
main sub-classes:

o Storage Data Operations, defines all data access operation. For example,
writing, retrieving, and updating files.

o Storage Information Operations, consists of accessing services statistics
information. For example, available space, service account information, and
storage metadata.

• Storage Service Instance Manager, is responsible for service implementation classes
discovery and instance creation. This component uses reflection-oriented
programming approach to find the implemented class for each service according to a
unique name defined in storage service domain model and the Storage Service
Interface inheritance.

• Task Manager, is in charge of parallelly accessing multiple storage services and
combined their responses. It uses .Net Task Parallel Library in order to create
independent tasks that run concurrently. This technology provides an efficient and
scalable system resources use. Moreover, it has been enhanced for load balancing and
throughput maximization making relatively lightweight tasks. As well as provide a
rich set of APIs for waiting, cancellation, exception handling, status reporting and
scheduling [38]. Additionally, Task Manager asynchronously reports all storage
services response stats to Storage Service Analyzer for logging and analysis.

3.5 Storage Service Analyzer
This component is designed for maintaining dynamic services profiles based on log analysis.
Storage Service Analyzer collects services response stats (e.g. service and client identification,
request type, response time, errors, file attributes), then parse and store them for further
analysis. The analysis extracts relevant information like service availability, performance, and
load. Finally, in order to make better decisions, services profiles are constantly updated with
the analysis results. It is divided into two sub-components:

• Log Manager, is composed of Elastic Open Source Stack. Elastic Stack is a set of
software useful for collecting, parsing, searching, storing, analyzing and visualizing
data from different sources and formats in real time [39]. Used components from
Elastic Stack are: Logstash for logs collection, verification, and parsing; Elasticsearch
for logs storage and fast searching; Kibana for real time logs data visualization and
service monitoring.

• Log Analyzer, this is a log analysis service which usee logs stored in Log Manager to
extract relevant information about the federated storage services. It takes advantage of

348 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

Elastic Stack real time processing and fast searching to keep up-to-date storage
services profiles. Section 5 presents the proposed metrics extracted from service logs
and the employed methods.

3.6 Storage Service Interface
Defines the methods that each storage service must implement in order to enable BoxBroker to
access them. Moreover, the interface implementation makes possible to dynamically discover
and instantiate services classes using reflection-oriented programming approach. Fig. 3 shows
how BoxBroker's components and subcomponents interact between each othe. Furthermore, it
describes the general process for a client request.

Fig. 3. BoxBroker Framework’s Components Interaction.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 349

3.7 BoxBroker API
The implemented REST API transforms BoxBroker in a standalone service solution.
Moreover, it extends BoxBroker’s architecture and domain models. An Authentication
Controller component is integrated in order to provide a token-based authentication process.
This extra component allows clients to register, authenticate and get an authorization token to
access the API endpoints. On the other hand, domain models were extended in order to allow
clients to define their own service credentials, policies, and associated files.

4. Policy-based Storage Service Selection

4.1 Problem Description
We want to distribute and replicate data across multiple storage services, based on dynamic
and personalized policies. Each storage service is defined by a group of numerical metrics. A
policy specifies the importance of each metric to store a specific data. Finally, a number of
desired replicas is provided.

A storage service has a finite number of metrics which define it. There is a vast range of
heterogeneous metrics useful for analyzing the best match to store the data. Nevertheless, their
values have not only different ranges but also opposite meaning, causing difficulties in their
comparison. For example, availability and cost, obviously they have a different range of
values and also opposite meaning. In the case of availability, you will choose the highest
possible. On the contrary, you would like to minimize the cost. Such heterogeneity requires
normalization in order to have all the characteristics lying between the same range [0, 1] [40].
Moreover, we assume that all the metrics are defined as; the smaller the value the better the
service. To illustrate, the availability can be defined as the probability of failure. As the
probability of failure decreases the availability increases.

On the other hand, we have a set of policies which help us to choose the correct group of
storage services for our data. Each policy is defined by two properties. First, a condition to
match a policy with the data. Second, a selection factor order, which defines a weight for each
service's metric based on importance order, where the first order has the highest weight and so
on.

4.2 Mathematical Definition
Suppose we have a set of storage services 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} , a set of policies 𝑃𝑃 =
{𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} and a replication factor 𝑟𝑟 . We want to select a subset 𝑅𝑅 of size 𝑟𝑟 from 𝑆𝑆, where
the distances between 𝑃𝑃 and 𝑅𝑅 are minimized.

4.2.1 Storage Service Model

Each service 𝑠𝑠𝑖𝑖 is represented by a vector 𝐾𝐾𝑆𝑆𝑖𝑖 = �𝜙𝜙1𝑖𝑖 ,𝜙𝜙2𝑖𝑖 , … ,𝜙𝜙𝑘𝑘𝑖𝑖 �, where 𝜙𝜙𝑗𝑗𝑖𝑖 denote the 𝑗𝑗-th
metric’s value for service 𝑠𝑠𝑖𝑖.

𝜙𝜙𝑗𝑗𝑖𝑖 ∈ [0, 1]#(1)

4.2.2 Policy Model

Similarly, a policy 𝑝𝑝𝑖𝑖 is defined by a vector 𝐾𝐾𝑃𝑃𝑖𝑖 = �𝜑𝜑1𝑖𝑖 ,𝜑𝜑2𝑖𝑖 , … ,𝜑𝜑𝑘𝑘𝑖𝑖 � . The 𝑗𝑗 -th metric’s
importance order based on policy 𝑝𝑝𝑖𝑖 is denoted by 𝜑𝜑𝑗𝑗𝑖𝑖 .

350 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

𝜑𝜑𝑗𝑗𝑖𝑖 ∈ {1, 2, … ,𝑘𝑘}#(2)

4.2.3 Metrics Weight
The metrics weight is exponentially distributed according to its importance order. The weight
of metric 𝑗𝑗 based on policy 𝑝𝑝𝑖𝑖 is defined by the equation 3, where λ is named weight factor, see
section 7.2.2 for more details.

𝑓𝑓𝑊𝑊(𝑝𝑝𝑖𝑖, 𝑗𝑗) = 𝑒𝑒−𝜆𝜆𝜑𝜑𝑗𝑗
𝑖𝑖
#(3)

Total weight of a metric 𝑗𝑗 according to all policies 𝑃𝑃 is expressed as:

𝑓𝑓𝑊𝑊(𝑃𝑃, 𝑗𝑗) = ∑ 𝑓𝑓𝑊𝑊(𝑝𝑝𝑖𝑖, 𝑗𝑗)𝑚𝑚
𝑖𝑖=1 #(4)

4.3 Proposed solution
To solve the services selection problem, we modeled it as a k-Nearest Neighbors problem.
Usually, k-NN is used to categorize a query point depending on its neighbors [41]. For our
purpose, the query point 𝑄𝑄 is the center of the space, where all the storage services
dimensional metrics are maximized. k (number of neighbors) is determined by 𝑟𝑟 (replication
factor). For distance measurement, we used a weighted Euclidean distance [40], where each
feature is scaled by the corresponding weight based on the policies.

𝐷𝐷(𝑠𝑠𝑖𝑖) = �∑ �𝜙𝜙𝑗𝑗𝑖𝑖 × 𝑓𝑓𝑊𝑊(𝑃𝑃, 𝑗𝑗)�
2

𝑘𝑘
𝑗𝑗=1 #(5)

Finally, the algorithm order by distance and takes 𝑟𝑟 nearest services. Algorithm 1 shows
policy-based storage service selection algorithm implementation.

Algorithm 1. Policy-Based Storage Service Selection

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 351

5. Log Analysis
Logs have been used as an important source of information for organizations in order to
quickly identify and resolve issues [26]. Other approaches about log analysis benefits were
discussed in section 2. We are proposing the integration of log analysis in Storage Service
Federation Environment with the purpose of evaluating services availability, performance,
and workload. The proposed analysis transforms our static services profiles into dynamic
profiles that change in time, helping our selection algorithm to take up-to-date decisions. This
analysis is done periodically and the number of log records used on it depends on a
pre-configured time interval, e.g. daily, weekly, monthly, etc. Table 3 describes the relevant
log attributes for our analysis.

Table 3. Relevant Log Attributes

Attribute Description
LogTime Date and time when the log record was created.
LogLevel

Logs are tagged with ”ERROR” if an error occurred or ”INFO”
if not.

ServiceId Services unique identification
RequestType
 The requested operation type.

RequestTime Date and time when the request was sent to the service.
ResponseTime
 Date and time when the response of the service was received.

FileSize
 The size(bytes) of the file involved in the requested.

ServiceProtocol
The Protocol utilized to establish a communication with the
service (e.g. HTTP, FTP, WebDAV, ...).

ErrorCode An error code if it exists.
ErrorMessage An error message if it exists.

5.1 Service Availability Analysis
In order to calculate the service’s availability score, we used the equation 6, which was
described by Marcus and Hal in [42]. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represents the mean time between failures and
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represents the mean time to repair or recover from a failure.

𝐴𝐴 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
#(6)

Our environment can generate errors that we do not want to take into consideration for
availability score computation. Per instance, some services have a limit on the file size that can
be written through their APIs/interfaces, or the credentials are not correct/expired. These
errors and others should not impact service availability because those errors are caused by our
framework or the clients. In order to minimize this scenario, service limitations must be
specified in its profile. We are proposing two discrimination methods for selecting the errors
that affect service availability. The First method is based on the combination of
ServiceProtocol and ErrorCode, a dictionary of protocols and error codes can be configured in
BoxBroker to specify the errors that must be considered in availability calculation.

Table 4 shows some proposed error codes. The second method is based on text sentiment
analysis which is applied to ErrorMessage in the case of ServiceProtocol and ErrorCode
absence. For text sentiment analysis we are using Naive Bayes classifier to measure error

352 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

message polarity [43] where negative ErrorMessage are considered in availability scores.
Table 5 shows some useful training phrases. Errors in Table 4 were also used for training
tagged as negative. Basically, we want to select errors associated to off-line service and avoid
errors caused by badly formed requests.

Table 4. Error Codes Related with Availability

Protocol Code Description

HTTP /
WebDAV

423 Resource Locked
429 Too Many Requests
500 Internal server error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout

FTP

421 Service Not Available
425 Can’t Open Data Connection
426 Connection Closed; Transfer Aborted.
434 Requested Host Unavailable.
451 Requested Action Aborted. Local Error in Processing.
534 Could Not Connect to Server.

10060 Cannot Connect to Remote Server.
10068 Too Many Users, Server is Full.

Table 5. Sentiment Training Set Sample

Phrase Polarity
Network Authentication Required Positive
Internal issue Negative
Bad Request Positive
Insufficient Storage Positive
Unauthorized Positive
Failed to write file to disk Negative
Method Not Allowed Positive
Unsupported Media Type Positive
Unable to save or download files Negative
Server error Negative
Bandwidth Limit Exceeded Positive
User is over storage quota Positive
Invalid username or password Positive
Requested action not taken. File name not allowed Positive

5.2 Service Performance Analysis
Read and write operations are used to measure service performance, which is defined as the
average number of megabytes processed by a service in a second (MB/s). Equation 7 is applied
for computing read and write performance based on a set of logs.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
#(7)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 353

5.3 Service Workload Analysis
Service workload is also measured utilizing read and write operations, defined as the
percentage of bytes processed for a service based on total bytes processed for the system in a
period of time. Equation 8 is applied for computing read and write workload based on a set of
logs.

𝑊𝑊𝑠𝑠𝑖𝑖 =
∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∈ 𝑠𝑠𝑖𝑖
∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∈ 𝑆𝑆

#(8)

6. File Blocks Allocation Method
BoxBroker offers the option of using a data striping technique in order to improve
performance and throughput. Moreover, segmenting a file in blocks and distributing them
across multiple services can be used as a security approach, as the file is spread across multiple
locations it can not be read without all blocks and the correct order. BoxBroker implements a
RAID 0 like striping algorithm, where consecutive blocks are stored in different services.
Since RAID 0 does not provide fault tolerance mechanism, we extended it adding a replication
factor 𝑟𝑟 , which indicates how many copies of each block we would like to store. This
mechanism allows BoxBroker to recover a file even when (𝑟𝑟 − 1) services have failed.

Fig. 4. File Blocks Allocation Method

Fig. 4 shows a graphical representation of our proposed file blocks allocation method. File
A is divided in eight blocks, blue blocks represent the original blocks, green ones represent the
first replica, and the red ones the second replica. The set of blocks 𝐵𝐵𝑠𝑠𝑖𝑖 allocated on a service 𝑠𝑠𝑖𝑖
can be expressed with the equation 9, where 𝑆𝑆 represents the set of disposable services, 𝐵𝐵 file
blocks set, and 𝑏𝑏 block number. Furthermore, 𝐵𝐵𝑠𝑠𝑖𝑖 is replicated in(𝑟𝑟 − 1) different services.
𝐵𝐵𝑠𝑠𝑖𝑖 is replicated in 𝑠𝑠𝑖𝑖+𝑗𝑗 if 𝑖𝑖 + 𝑗𝑗 ≤ |𝑆𝑆| or 𝑠𝑠𝑖𝑖+𝑗𝑗−|𝑆𝑆| if 𝑖𝑖 + 𝑗𝑗 > |𝑆𝑆| for all 𝑗𝑗 ∈ {1,2, … , 𝑟𝑟 − 1} and
2 ≤ 𝑟𝑟 ≤ |𝑆𝑆|.

354 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

𝐵𝐵𝑠𝑠𝑖𝑖 = �𝑏𝑏 ∈ 𝐵𝐵: 𝑖𝑖 = 𝑏𝑏 − �
𝑏𝑏

|𝑆𝑆|� ∗
|𝑆𝑆|�#(9)

7. Experiments & Results

7.1 Log Analysis
In order to evaluate the functionality of the Storage Service Analyzer, we developed a client
application that generates requests through our framework to four storage services providers
Box, Dropbox, GoogleDrive, and OneDrive denoted as 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3 and 𝑆𝑆4 respectively. Box
and GoogleDrive have a object storage architecture while Dropbox and OneDrive use a
filesystem architecture. The generated requests were made of multiples reading and writing
transactions with randomly selected files of various sizes. Collected logs were used to
calculate services availability, performance, and workload. Moreover, an overall analysis and
comparison between services are provided. Furthermore, the results shown in this section are
used to evaluate our selection model in section 7.2. The experiments were conducted for a
period of 20 days and the results were divided into four sub-periods of five days each,
𝑇𝑇1(1− 5), 𝑇𝑇2(6− 10), 𝑇𝑇3(11− 15) and 𝑇𝑇4(16− 20).

7.1.1 Availability Analysis
Availability analysis is done according to equation 6. The results scores are shown in Fig. 5.
We can see that all the services have at least one period with a score equal or greater than
99.9%. Service 𝑆𝑆2 has availability average over 99.9%, it means approximately eight hours
or less of downtime every year. 𝑆𝑆3 has an average of 98.8%, meaning at least 4.38 days of
downtime per year. 𝑆𝑆4 and 𝑆𝑆1 have an average around 99.7% for 24 hours or less of downtime
per year. However, 𝑆𝑆4 achieved more than 99.99% in periods 𝑇𝑇1 and𝑇𝑇4 transformed as 52.5
minutes of downtime each year. According to the results, the difference on availability score
seems very small, nevertheless, the downtime is quite significant. It should be noted that these
results are based on randomly generated errors.

Fig. 5. Availability Analysis Results

7.1.2 Performance Analysis
Fig. 6 and Fig. 7 show services read and write performance results respectively. In the results
can be appreciated that the performance keeps the trend in all periods. Moreover, we can see
the fact that if a service has the best write performance doest not necessarily means that it

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 355

would have the best read performance, or vice-versa. Despite that 𝑆𝑆3 and 𝑆𝑆4are battling for the
best read performance, 𝑆𝑆4 clearly has the best write performance.

Fig. 6. Read Performance Analysis Results

Fig. 7. Write Performance Analysis Results

7.1.3 Workload Analysis
As our transaction simulator sent requests to all services the workload is almost balanced.
Read and write workload results are shown in Fig. 8 and Fig. 9 respectively. For both cases,
the workload percentage oscillate between 24.5 and 25.5.

Fig. 8. Read Workload Analysis Results

356 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

Fig. 9. Write Workload Analysis Results

7.2 Policy-based Storage Service Selection
In this section, we are going to demonstrate how our selection algorithm works using 𝑇𝑇4
availability and performance results from section 7.1, together with other metrics such as cost
and available space. However, as we defined in section 4.1, all metrics must be represented as;
the lower the value the better the service. Therefore, we redefined the metrics as:

• Availability, is used as the percentage of time that the service was unavailable. It is
calculated as 100 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 . The lower the time the better the service’s
availability.

• Write and read performance, are represented as the average time in seconds for
processing 1MB of data. They are calculated as 1 ⁄ (𝑅𝑅|𝑊𝑊 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). The lower
the time the better the service's performance.

• Cost, the price of storing 1GB data. The lower the price the cheaper the service.
• Used space, the percentage of space that is currently used.

Table 6 lists four services and their metrics values. Consider measuring the distances of each
service using this metrics values. The contribution of cost and space in the distance calculation
is minimum, we can say that the distance is practically determined by performance and
availability. Fig. 10 illustrates graphically the disparity between metrics. Seeing that each
metric has its own range [𝑎𝑎, 𝑏𝑏], some form of normalization is required in order to balance out
the contributions in the distance calculation [40].

Table 6. Storage Services Profiles

 Services
S1 S2 S3 S4

Availability (%) 0.992 0.025 1.511 0.007
Read Perf. (s/MB) 0.569 0.466 0.370 0.348
Write Perf. (s/MB) 0.530 0.833 0.313 0.211
Cost (USD/GB) 0.011 0.010 0.009 0.007
Used Space (%) 0.022 0.037 0.054 0.090

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 357

Fig. 10. Not Normalized Service Profiles

7.2.1 Metrics Normalization
In order to balance metrics contribution in distance calculation, all metrics are scaled to a
common range [0, 1] [40]. We assumed that for all metric the lower bound 𝑎𝑎 = 0 and the
upper bound 𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) respectively. The normalized metric’s value 𝑧𝑧 is
determined by the equation:

𝑧𝑧 =
(𝑥𝑥 − 𝑎𝑎) × (1 − 0)

𝑏𝑏 − 𝑎𝑎
=
𝑥𝑥
𝑏𝑏

#(10)

Table 7 and Fig. 11 show the services profiles after applying the normalization. Comparing
Fig. 10 and Fig. 11, we can say that each metric has equal contribution in order to measure the
service’s distance.

Table 7. Normalized Storage Services Profiles

 Services
S1 S2 S3 S4

Availability (%) 0.656 0.017 1.000 0.005
Read Perf. (s/MB) 1.000 0.818 0.650 0.611
Write Perf. (s/MB) 0.636 1.000 0.376 0.253
Cost (USD/GB) 1.000 0.876 0.864 0.604
Used Space (%) 0.244 0.411 0.600 1.000

358 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

Fig. 11. Normalized Service Profiles

7.2.2 Weight Factor Selection
After defining our services profiles, the next step is to select how metrics weights are going to
be distributed. In equation 3 we defined an exponential formula for distributing the weights.
This subsection shows the effect of different weight factor values. ↑ and ↓ denote increment
and decrement respectively.

Table 8. Weight Factor Effect

 Weight factor
Increase Decrease

Order’s weight ↓ ↑
Weights distribution ↓ ↑
Weights difference ↑ ↓

Fig. 12. Weight Distribution for Distinct Wight Factors

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 359

The effect of weight factor is described in Table 8. As λ increase, the weight of each order
decrease. In the same way, the weights are less distributed, this means that weights are more
concentrated in the first orders. Nevertheless, weights difference increase as λ increase. Fig.
12 shows the weight distribution for 𝜆𝜆 ∈ {1, 0.7, 0.5, 0.4, 0.3}. In Fig. 12 we also can
graphically see what Table 8 expressed. Let’s take 𝜆𝜆 = 1 and 𝜆𝜆 = 0.5 as an example:

• The first order weights are 0.37 and 0.61 for 𝜆𝜆 = 1 and 𝜆𝜆 = 0.5 respectively, so as λ
decrease, the orders weights increase.

• For 𝜆𝜆 = 1 only the first 2 orders have a weight bigger than 10%, however, for
𝜆𝜆 = 0.5 the first 4 order have a weight bigger than 10%, so as λ decrease, the weights
are more distributed.

• The weight for order 𝑗𝑗 is a percentage of the weight for order 𝑗𝑗 − 1. These percentages
are approximately 37% and 61% for 𝜆𝜆 = 1 and 𝜆𝜆 = 0.5 respectively. In the same
way, we can say that the difference between two orders weights is 63% for 𝜆𝜆 = 1 and
39% for 𝜆𝜆 = 0.5. So as λ decrease, the weights difference also decrease.

In summary, weight factor selection depends on the number of metrics we want to take into
consideration. Then, the difference you want between weights. Finally, the weights magnitude
you want. Based on the description above, for our experiments we selected a weight factor:

𝜆𝜆 = 0.4#(11)

7.2.3 Policies Definition
At this point, we have defined our services profiles, which are shown in Table 7, and the
weight factor we are going to use (equation 11). The next step is to define some policies to
apply in our experiments. Therefore, four policies are defined to match next conditions:

• 𝑃𝑃1 →data that is usually modified and read, where write/read performance and
availability are the priority. For example, work in progress documents (text, code,
presentation, ...).

• 𝑃𝑃2 → one-time or rarely write but usually read data. As a result, the most important
metrics are read performance and availability. For example, media files (music,
videos, pictures) and some PDF documents could fix in this category.

• 𝑃𝑃3 → one-time or rarely write and read data. For example, data backups. Therefore,
more importance is given to available space and cost.

• 𝑃𝑃4 → less important data. Data that maybe never will be used again but you have to
keep it. For this data category, the cost is the most important metric.

Table 9 defines our set of policies and its metric's importance order. Metrics weights based
on each policy are shown in Fig. 13.

Table 9. Policies Metrics Order Definition

 Policies
P1 P2 P3 P4

Availability 1 1 3 5
Read Performance 3 2 4 4
Write Performance 2 4 5 3
Cost 4 3 2 1
Used Space 5 5 1 2

360 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

Fig. 13. Policies Metrics Weights

7.2.4 Storage Service Selection
Finally, we have all the pieces to apply our algorithm and select the best storage services. With
the services profiles in Table 8 and policies weights in Fig. 15 we can compute each service’s
distance using equation 5. Then, services are ordered by distance and select the desired
number of replicas. Fig. 14 shows services distance for each of the policies defined in Table 9.
Based on the distance, services selection order are as follows: for 𝑃𝑃1 and 𝑃𝑃2 services selection
order is [𝑆𝑆4, 𝑆𝑆2, 𝑆𝑆1, 𝑆𝑆3], for 𝑃𝑃3 is [𝑆𝑆2, 𝑆𝑆1, 𝑆𝑆3, 𝑆𝑆4], and for 𝑃𝑃4 [𝑆𝑆4, 𝑆𝑆3, 𝑆𝑆2, 𝑆𝑆1].

Fig. 14. Services Distance Based on Policies

Now suppose we have some data that match more than one policy. For example, policies 𝑃𝑃3
and 𝑃𝑃4 are very similar. Let us say that our data match 𝑃𝑃3 and 𝑃𝑃4. Accordingly equation 4, the
total metric’s weight is defined as the sum of each policy metric’s weight. Table 10 shows the
new metrics weights for this special case. Based on the new weights, services selection order
result is [𝑆𝑆2, 𝑆𝑆1, 𝑆𝑆3, 𝑆𝑆4]. Services distance are shown in Fig. 15.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 361

Table 10. Multi-Policy Metrics Weights

 Policies
P3 + P4

Availability 0.437
Read Performance 0.404
Write Performance 0.437
Cost 1.120
Used Space 1.120

Fig. 15. Services Distance Based on 𝑃𝑃3 and 𝑃𝑃4

7.2.5 Services Selection Time
The time complexity of our algorithm is defined by equation 12. 𝑘𝑘 represent the number of
metrics, 𝑚𝑚 number of policies and 𝑛𝑛 number of services. Therefore, 𝑘𝑘𝑘𝑘 represent the time to
compute total metrics weight, 𝑘𝑘𝑘𝑘 time to calculate the Euclidean distance for each service and
𝑛𝑛 log𝑛𝑛 time to order services by the distance.

𝑂𝑂(𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑘𝑘 + 𝑛𝑛 log𝑛𝑛)#(12)

Fig. 16, Fig. 17 and Fig. 18 show the selection time for different cases. Moreover, after the

number of services 𝑛𝑛, the results show that 𝑘𝑘 is the parameter that impacts the most the
selection time, because it also affects two parts of the time equation (equation 12). Therefore,
selecting the correct amount of metrics to define our services profiles becomes an important
task. However, Fig. 18 shows a more realistic scenery, where we have a fixed number of
services defined by a fixed number of metrics and only the amount of policies changes
accordingly to the data. Fixing 𝑘𝑘 and 𝑛𝑛 two parts of the time equation (equation 12) become
constants and we can achieve a liner selection time, shown in Fig. 18.

362 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

Fig. 16. Selection time with a fixed number of policies (10) and services ∈ {5, 10, 15, 20,30},

varying the number of metrics k.

Fig. 17. Selection time with a fixed number of services (10) and policies ∈ {5, 10, 15, 20,30},

varying the number of metrics k.

Fig. 18. Selection time with a fixed number of metrics (10) and services ∈ {5, 10, 15, 20,30},

varying the number of policies m.

In comparison to [14, 21, 22, 23, 24, 25] approaches, where the selection is based on fixed
metrics, our proposal can be used with any number of metrics defined by the clients. In
addition, unlike these approaches our algorithm allows clients to change the importance of
each metric depending on the data. [16] proposes a rule-based service selection algorithm, but

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 363

clients must categorize each file in order to match the policies, while our approach
automatically matches the files based on their attributes. Furthermore, we create a
straightforward policy model based on metrics order, in contrast to [16], where the weight of
each metric must be specified.

Table 11 and Fig. 19 compare our selection algorithm with the solutions presented by Yang
and Ren [14] (Virtual Framework for Cloud Storage Service - VCSS) and Chang et al. [22]
(Probability-based Service Selection - PB). Since these algorithms do not support policies, we
compare them with our algorithm using only one policy. Moreover, they only use two metrics
for the selection process. Yang and Ren [14] selection is based on performance and available
space. Chang et al. [22] selection is based on availability and cost. For the first comparison test,
we set the number of metrics to two. Table 11 shows that (PB) has the worst performance, for
that reason (PB) was removed in Fig. 19, that allow us to see better the comparison between
(VCSS) and our approach. Fig. 19 shows that BoxBroker selection algorithm performs better
than (VCSS) with a basic setting which is a fair comparison. However, with a more complex
configuration of 10 metrics and 1000 policies, our algorithm can make a decision over 500
services in less than a millisecond.

Table 11. Algorithms Execution Time (ms)

Algorithms n=10 n=50 n=100 n=500
BoxBroker(m=1,k=2) 0.0094 0.0165 0.0321 0.1563
BoxBroker(m=1000,k=10) 0.5176 0.5182 0.5607 0.9845
VCSS [14] 0.0092 0.0286 0.0871 0.2708
PB [22] 0.0680 5.3368 16.2033 750.4673

Fig. 19. Comparison of Algorithms Execution Time

7.3 File Striping Performance
In order to evaluate the performance of our framework parallel processing with striped files vs
no-striped files, we used multiple file size striped in different block size. Moreover, we
evaluated read, write, and delete performance for each file and block size. Fig. 20 and Fig. 21
present data write and read throughput in MB/s respectively. Fig. 22 shows data deletion
performance represented as the required time in seconds to delete the entire file. The results
from the conducted experiments demonstrate that the combination of file striping and our
framework parallel processing can improve performance and data throughput. Note that this
results can vary depending on BoxBroker server processing capacity and network speed.

364 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

Fig. 20. File Striping Write Performance

Fig. 21. File Striping Read Performance

Fig. 22. File Striping Delete Performance

All the experiments in section 7 were done using a 64-bit Windows 10 Pro PC with an Intel Core
i7-6700HQ CPU @ 2.6GHz, and 16 GB of RAM.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 365

8. Conclusion & Future Work
We have presented BoxBroker, a policy-driven storage service federation framework that
allows the integration of multiple storage services into a seamless storage pool. BoxBroker
also implements a policy-based service selection algorithm in order to automate the data
distribution and retrieval. A straightforward policy model was proposed to empower clients
with the possibility of defining their own data dispersion rules. A service evaluation method
for allowing dynamic decisions was implemented. Furthermore, a practical demonstration of
our approach was shown and a comparison with other approaches.

Future works are led to solving the limitation of storage metric definition in our algorithm,
allowing the definition of positive and negative metrics; some metrics must be minimized
while others must be maximized. At the same time, we are looking forward to the
implementation of a data migration component that takes advantage of our service analysis,
achieving services load balancing, and I/O intensive data reallocation in high-performance
services.

References
[1] L. C. Miller, S. Fadden, Software Defined Storage for Dummies, ibm platfo Edition, John Wiley &

Sons, Inc., New Jersey, 2014.
[2] V. Turner, J. F. Gantz, D. Reinsel, S. Minton, The Digital Universe of Op-portunities: Rich Data

and the Increasing Value of the Internet of Things, IDC Analyze the Future.
[3] Google, Google Cloud Storage (2016). Article (CrossRef Link),
[4] Amazon, Amazon S3 Cloud Storge (2016). Article (CrossRef Link)
[5] Dropbox, Dropbox Cloud Storage (2016). Article (CrossRef Link)
[6] Red Hat, Ceph Storage (2016). Article (CrossRef Link)
[7] G. community, GlusterFS Storage (2016). Article (CrossRef Link)
[8] Quobyte Inc, XtreemFS Storage (2016). Article (CrossRef Link)
[9] IBM, IBM Storage (2016). Article (CrossRef Link)
[10] HPE, HPE Storage (2016). Article (CrossRef Link)
[11] Microsoft, Microsoft Storage (2016). Article (CrossRef Link) URL
[12] D. Vellante, What is Federated Storage? (2010). Article (CrossRef Link)
[13] Hewlett Packard Enterprise, HPE 3PAR Peer Motion Software (2015). Article (CrossRef Link)
[14] D. Yang, and C. Ren, “VCSS: An Integration Framework for Open Cloud Stor-age Services,” in

Proc. of IEEE 10th World Congress on Services (2014), pp.155– 160, 2014.
Article (CrossRef Link)

[15] G. Vernik, A. Shulman-Peleg, S. Dippl, C. Formisano, M. C. Jaeger, E. K. Kolodner, M. Villari,
“Data On-boarding in federated storage clouds,” in Proc. of IEEE International Conference on
Cloud Computing CLOUD (2013), pp.244–,2013. Article (CrossRef Link)

[16] R. M. d. O. Libardi, S. Reiff-Marganiec, L. H. Nunes, L. J. Adami, C. H. Ferreira, J. C. Estrella,
and et al, “MSSF: User-Friendly Multi-Cloud Data Dispersal,” in Proc. of 2015 IEEE 8th
International Conference on Cloud Computing, pp.341–348, 2015. Article (CrossRef Link)

[17] P. Janviriya, T. Ongarjithichai, P. Numruktrakul, C. Ragkhitwetsagul, “CloudyDays: Cloud
storage integration system,” in Proc. of Proceedings of the 2014 3rd ICT International Senior
Project Conference ICT-ISPC 2014, pp.125–128, 2014. Article (CrossRef Link)

https://cloud.google.com/storage/
https://aws.amazon.com/s3/
https://www.dropbox.com/business
http://ceph.com/
https://www.gluster.org/
http://www.xtreemfs.org/
http://www-03.ibm.com/systems/storage/
https://www.hpe.com/us/en/storage.html
https://www.microsoft.com/en-us/server-cloud/%20solutions/storage.aspx
http://wikibon.org/wiki/v/What_is_Federated_Storage%3F
http://h20195.www2.hp.com/v2/getpdf.aspx/4AA3-5714ENW.pdf?ver=2.0
http://dx.doi.org/10.1109/SERVICES.2014.36
http://dx.doi.org/10.1109/CLOUD.2013.54
http://dx.doi.org/10.1109/CLOUD.2015.53
http://dx.doi.org/10.1109/ICT-ISPC.2014.6923233

366 Heinsen et al.: BoxBroker: A Policy-Driven Framework for Optimizing Storage Service Federation

[18] R. Zhao, C. Yue, B. Tak, C. Tang, “SafeSky: A Secure Cloud Storage Middleware for End-User
Applications,” in Proc. of 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS), pp.
21– 30, 2015. Article (CrossRef Link)

[19] S. Shah, A. Nair, U. Thakar, “A framework to integrate multiple cloud storage services and
provide consistent feature set,” in Proc. of 2014 Annual IEEE India Conference (INDICON), IEEE,
pp.1–5, 2014. Article (CrossRef Link)

[20] M. Malensek, S. Pallickara, S. Pallickara, “Autonomous Cloud Federation for High- Throughput
Queries over Voluminous Datasets,” IEEE CLOUD COMPUTING, IEEE, vol.3, No. 3, pp.40-49,
2016. Article (CrossRef Link)

[21] C. Esposito, M. Ficco, F. Palmieri, A. Castiglione, “Smart Cloud Storage Service Selection Based
on Fuzzy Logic, Theory of Evidence and Game Theory,” IEEE Transactions on Computers X (c)
(2015), pp.2348–2362, 2016. Article (CrossRef Link)

[22] C. W. Chang, P. Liu, J. J. Wu, “Probability-based cloud storage providers selection algorithms
with maximum availability,” in Proc. of Proceedings of the International Conference on Parallel
Processing (2012), pp.199– 208, 2012. Article (CrossRef Link)

[23] H. Hong Tao, W. Yan Ke, C. Cao Bingyao, Yu Fei, Y. Wu Yating, “A dynamic data allocation
method with improved load-balancing for cloud storage system,” in Proc. of IET International
Conference on Smart and Sustain-able City 2013 (ICSSC 2013), pp. 183–188, 2013.
Article (CrossRef Link)

[24] H. Nakazato, M. Nishio, M. Fujiwara, “Data allocation method considering server performance
and data access frequency with consistent hashing,” in Proc. of 2012 14th Asia-Pacific Network
Operations and Management Symposium (APNOMS) IEEE 2012, pp. 1–8, 2012.
Article (CrossRef Link)

[25] W. Xie, J. Zhou, M. Reyes, J. Noble, Y. Chen, “Two-mode data distribution scheme for
heterogeneous storage in data centers,” in Proc. of 2015 IEEE International Conference on Big
Data (Big Data) IEEE 2015, pp.327–332, 2015. Article (CrossRef Link)

[26] D. Jayathilake, “Towards structured log analysis,” in Proc. of JCSSE 2012 - 9th Inter-national
Joint Conference on Computer Science and Software Engineering (2012), 259–264, 2012.
Article (CrossRef Link)

[27] M. Moh, S. Pininti, S. Doddapaneni, T.-S. Moh, “Detecting Web Attacks Using Multi-Stage Log
Analysis,” in Proc. of 2016 IEEE 6th International Conference on Advanced Computing (IACC)
(2016), pp.733– 738, 2016. Article (CrossRef Link)

[28] D. Grech, P. Clough, “Investigating Cluster Stability when Analyzing Transaction Logs,” in Proc.
of 2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL) (2016), pp.115–118, 2016.
Article (CrossRef Link)

[29] H. Chen, S. Tu, C. Zhao, H. Yongfeng, “Provenance Cloud Security Auditing System Based on
Log Analysis,” in Proc. of 2016 IEEE International Conference of Online Analysis and Computing
Science (ICOACS) (2016), pp.155–159, 2016. Article (CrossRef Link)

[30] A. Hamzehei, R. K. Wong, E. Mohammad, F. Chen, E. ShafieiBavani, “Scalable Sentiment
Analysis for Microblogs based on Semantic Scoring,” in Proc. of 2015 IEEE International
Conference on Services Computing Scalable (2015), pp.271–278, 2015. Article (CrossRef Link)

[31] OAuth 2.0 protocol (2016). Article (CrossRef Link)
[32] T. Dietterich, “Machine Learning,” McGraw-Hill Science/Engineering/Math, vol. 28, No.4, 1996.

Article (CrossRef Link)
[33] Microsoft, Dynamic Expressions (2016). Article (CrossRef Link)
[34] Microsoft, Dynamic Expressions Operators (2016). Article (CrossRef Link)

http://dx.doi.org/10.1109/SRDS.2015.23
http://dx.doi.org/10.1109/INDICON.2014.7030416
http://dx.doi.org/10.1109/MCC.2016.65
http://dx.doi.org/10.1109/TC.2015.2389952
http://dx.doi.org/10.1109/ICPP.2012.51
http://dx.doi.org/10.1049/cp.2013.1954
http://dx.doi.org/10.1109/APNOMS.2012.6356084
http://dx.doi.org/10.1109/BigData.2015.7363772
http://dx.doi.org/10.1109/JCSSE.2012.6261962
http://dx.doi.org/10.1109/IACC.2016.141
http://dx.doi.org/10.1145/2910896.2910923
http://dx.doi.org/10.1109/ICOACS.2016.7563069
http://dx.doi.org/10.1109/SCC.2015.45
http://oauth.net/2/
http://dx.doi.org/10.1145/242224.242229
https://github.com/kahanu/System.Linq.Dynamic
https://msdn.microsoft.com/en-us/library/dd339025.aspx

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 367

[35] N. Iscoe, G. Williams, G. Arango, “Domain modeling for software engineering,” in Proc. of [1991
Proceedings] 13th International Conference on Software Engineering, IEEE Comput. Soc. Press,
pp.340–343, 1991. Article (CrossRef Link)

[36] T. Dykstra, R. Anderson, Getting Started with Entity Framework 6 Code First using MVC 5, 2014.
Article (CrossRef Link)

[37] Microsoft, Reflection Oriented Programing (2016). Article (CrossRef Link)
[38] Microsoft, Task Parallelism (Task Parallel Library) (2016). Article (CrossRef Link)
[39] E. BV, The Open Source Elastic Stack (2016). Article (CrossRef Link), URL
[40] M. Greenacre, R. Primicerio, Measures of distance between samples: Euclidean, in: Multivariate

Analysis of Ecological Data, pp. 47–59, 2013.
[41] R. Kohavi, P. Langley, Y. Yun, “The Utility of Feature Weighting in Nearest-Neighbor

Algorithms,” in Proc. of Proceedings of the Ninth European Conference on Machine Learning,
pp.85-92, 1997. Article (CrossRef Link)

[42] E. Marcus, S. Hal, Blueprints for High Availability, Second Edition, Robert Ipsen, Indiana, 2003.
[43] A. Smola, S. Vishwanathan, Introduction to Machine Learning, Cambridge university press, 2008.

Rene Heinsen, received the bachelor's degree in Telematics Engineering from
Pontificia Universidad Catolica Madre y Maestra, Dominican Republic in 2013. He is
currently working toward the Master degree in Computer Engineering Department at
Kyung Hee University, South Korea. His research interests includes: Grid and Cloud
Computing, Big Data Storage, Parallel computing and Software Engineering.

Cindy López, received bachelor's degree in Information Systems and Computer
Science from National Polytechnic School, Ecuador in 2007. She is currently working
toward the Master degree in Computer Engineering Department at Kyung Hee University,
South Korea. Her research interests includes: Cloud Computing, Storage Federation,
Big-Data and Internet of Things.

Eui-Nam Huh received his bachelor degree in Computer Science and Engineering from
Busan University, master degree of Computer Science from University of Texas, USA,
and Ph.D. in Computer Science from the Ohio University, USA. His current research
interests includes: Cloud Computing, Distributed Real-Time System, Grid Computing,
High Performance Computing, Mobile Cloud, BigData, Internet of Things, Networking
and Security. He is a professor in department of Computer Engineering and Science,
director of Real-Time Mobile Cloud Research Center and Dean of Information Services
and Strategy in Kyung Hee University.

http://dx.doi.org/10.1109/ICSE.1991.130660
https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
https://msdn.microsoft.com/en-us/library/mt656691.aspx
https://msdn.microsoft.com/en-us/library/dd537609.aspx
https://www.elastic.co/products
http://www.isle.org/%7Elangley/papers/diet.ecml97.pdf

