• Title/Summary/Keyword: data-driven decision making

Search Result 83, Processing Time 0.026 seconds

A Study on the Improvement Measures for the Management and Utilization of Korea's Fiscal Government Data: Focusing on Fiscal Data Governance (재정데이터의 관리 및 활용을 위한 개선방안 연구: 재정데이터 거버넌스를 중심으로)

  • Song, Seok-Hyun
    • Informatization Policy
    • /
    • v.28 no.3
    • /
    • pp.95-111
    • /
    • 2021
  • To achieve a data-driven policy decision-making system, the Ministry of Strategy and Finance has formed a marketing team and is actively building upon it. This system, currently under construction, will enable data-driven financial tasks beyond simple financial administration. The U.S. has already enacted The Foundations for Evidence-Based Policymaking Act in the process of similar pursuits. Since last year, the data-driven system administrative law has been enacted in Korea, and a legal framework has been established for data-driven administrative work. The next-generation budget accounting system to fulfill its role as a data-driven system needs public policy support to operate. Innovation and transformation are needed in various areas such as data management, legal system, and installation of related systems. Accordingly, it is very timely to analyze the financial systems and policies of advanced countries such as the U.S. and U.K., which already have established and operates such a financial system. By benchmarking and applying existing financial information systems to the next-generation budget accounting system, a better system will result. In this study, major developed countries, including the U.S., U.K., France, and Canada were benchmarked and analyzed in terms of the main elements of data governance: public policy, systems, legal framework, promotion system, and service level. It was discovered that the role and direction of the national fiscal policy system that the people favor should be able to respond quickly to the recent difficult economic crisis environment such as the digital transformation trend and COVID-19.

How Digital Technology Driven Millennial Consumer Behaviour in Indonesia

  • INDAHINGWATI, Asmara;LAUNTU, Ansir;TAMSAH, Hasmin;FIRMAN, Ahmad;PUTRA, Aditya Halim Perdana Kusuma;ASWARI, Aan
    • Journal of Distribution Science
    • /
    • v.17 no.8
    • /
    • pp.25-34
    • /
    • 2019
  • Purpose - Investigate the association of internal and external factors of consumers and analysing the role of moderating comparative marketing aspects, especially the part of YouTuber and celebgram in influencing purchase decisions. Apart from that, it provides an overview of the pattern of purchase decision making in forming Millennials and Y generation consumer culture Research design, data, and methodology - This study uses a quantitative research approach with descriptive, predictive, and prospective data analysis on 300 eligible Millennials and Y aged 20-35 years who are bachelor-educated. Data collection using online surveys with final statistical analysis using the Partial Least Square (PLS) approach Results - All hypothesis are declared accepted, indirect testing the dominant internal consumer factors have a positive and significant effect on consumers' purchase decisions. Through testing Moderating, aspect marketing comparative is also authoritative able to moderate internal consumer factors towards purchase decision making. Conclusions - Digital technology is changing the paradigm and perceptions of the millennials and Y generations in terms of behaving as a generation of technology connoisseurs who also influence and shape the culture of that generation and the generations to come in the future.

Unlocking Digital Transformation: The Pivotal Role of Data Analytics and Business Intelligence Strategies

  • Edwin Omol;Lucy Mburu;Paul Abuonji
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.14 no.3
    • /
    • pp.77-91
    • /
    • 2024
  • This article aims to comprehensively analyze the crucial role played by data analytics and business intelligence (BI) strategies in propelling digital transformation within diverse industries. Through an extensive literature review and examination of real-world case studies, the study employs a systematic analysis of scholarly works and industry reports. This approach provides a panoramic view of how organizations utilize data-driven insights for competitive advantages, improved customer experiences, and fostering innovation. The findings underscore the pivotal significance of data analytics and BI strategies in influencing strategic decision-making, enhancing operational efficiency, and ensuring long-term sustainability across various industries. The study stands out in its originality by offering a unique synthesis of insights derived from scholarly works and real-world case studies, contributing to a holistic understanding of the transformative impact of data analytics and BI on contemporary business practices. While the study provides valuable insights, limitations include the scope of available literature and case studies. The implications call for further research to explore emerging trends and evolving challenges in the dynamic landscape of data analytics and BI. The practical implications highlight the tangible benefits organizations can derive from integrating data analytics and BI strategies, emphasizing their role in shaping strategic decisions and fostering operational efficiency. In a broader context, the study delves into the social implications of the symbiotic relationship between data analytics, BI, and digital transformation. It explores how these strategies impact broader societal and economic aspects, influencing innovation and sustainability.

Transforming Pre-service Teachers into Data-Driven Educators: A Developmental Research

  • Huijin SEOK ;Jiwon LEE ;Eunjeong SONG ;Jeongmin LEE
    • Educational Technology International
    • /
    • v.24 no.2
    • /
    • pp.169-202
    • /
    • 2023
  • This study aims to develop instructional design strategies included in educational programs that can effectively improve the educational data literacy of pre-service teachers. We used the design and development model proposed by Richey and Klein and investigated its internal and external validity. Internal validity assessment involved the input of five experts who evaluated the initial instructional strategies. We conducted an educational data literacy education program with 29 pre-service teachers from Korean colleges and graduate schools for external validity. The effectiveness of the program was verified by the Wilcoxon Rank Sum Test, which revealed a meaningful statistical difference between Wilcoxon Rank Sum Test post-scores after the four weeks of online classes. Therefore, this study developed instructional strategies followed by the steps of data-based decision-making: the final instructional strategies encompass 21 strategies, categorized for implementation before, during, and after classes, accompanied by 38 detailed guidelines. This approach bears notable significance as it encapsulates actionable and effective instructional strategies thoughtfully tailored to the unique circumstances and educational setting of the field, as well as the specific characteristics and requirements of the learners.

Some Observations for Portfolio Management Applications of Modern Machine Learning Methods

  • Park, Jooyoung;Heo, Seongman;Kim, Taehwan;Park, Jeongho;Kim, Jaein;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • Recently, artificial intelligence has reached the level of top information technologies that will have significant influence over many aspects of our future lifestyles. In particular, in the fields of machine learning technologies for classification and decision-making, there have been a lot of research efforts for solving estimation and control problems that appear in the various kinds of portfolio management problems via data-driven approaches. Note that these modern data-driven approaches, which try to find solutions to the problems based on relevant empirical data rather than mathematical analyses, are useful particularly in practical application domains. In this paper, we consider some applications of modern data-driven machine learning methods for portfolio management problems. More precisely, we apply a simplified version of the sparse Gaussian process (GP) classification method for classifying users' sensitivity with respect to financial risk, and then present two portfolio management issues in which the GP application results can be useful. Experimental results show that the GP applications work well in handling simulated data sets.

An Empirical Data Driven Optimization Approach By Simulating Human Learning Processes (인간의 학습과정 시뮬레이션에 의한 경험적 데이터를 이용한 최적화 방법)

  • Kim Jinhwa
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.117-134
    • /
    • 2004
  • This study suggests a data driven optimization approach, which simulates the models of human learning processes from cognitive sciences. It shows how the human learning processes can be simulated and applied to solving combinatorial optimization problems. The main advantage of using this method is in applying it into problems, which are very difficult to simulate. 'Undecidable' problems are considered as best possible application areas for this suggested approach. The concept of an 'undecidable' problem is redefined. The learning models in human learning and decision-making related to combinatorial optimization in cognitive and neural sciences are designed, simulated, and implemented to solve an optimization problem. We call this approach 'SLO : simulated learning for optimization.' Two different versions of SLO have been designed: SLO with position & link matrix, and SLO with decomposition algorithm. The methods are tested for traveling salespersons problems to show how these approaches derive new solution empirically. The tests show that simulated learning for optimization produces new solutions with better performance empirically. Its performance, compared to other hill-climbing type methods, is relatively good.

Vibration based bridge scour evaluation: A data-driven method using support vector machines

  • Zhang, Zhiming;Sun, Chao;Li, Changbin;Sun, Mingxuan
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.125-145
    • /
    • 2019
  • Bridge scour is one of the predominant causes of bridge failure. Current climate deterioration leads to increase of flooding frequency and severity and thus poses a higher risk of bridge scour failure than before. Recent studies have explored extensively the vibration-based scour monitoring technique by analyzing the structural modal properties before and after damage. However, the state-of-art of this area lacks a systematic approach with sufficient robustness and credibility for practical decision making. This paper attempts to develop a data-driven methodology for bridge scour monitoring using support vector machines. This study extracts features from the bridge dynamic responses based on a generic sensitivity study on the bridge's modal properties and selects the features that are significantly contributive to bridge scour detection. Results indicate that the proposed data-driven method can quantify the bridge scour damage with satisfactory accuracy for most cases. This paper provides an alternative methodology for bridge scour evaluation using the machine learning method. It has the potential to be practically applied for bridge safety assessment in case that scour happens.

Transforming Patient Health Management: Insights from Explainable AI and Network Science Integration

  • Mi-Hwa Song
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.307-313
    • /
    • 2024
  • This study explores the integration of Explainable Artificial Intelligence (XAI) and network science in healthcare, focusing on enhancing healthcare data interpretation and improving diagnostic and treatment methods. Key methodologies like Graph Neural Networks, Community Detection, Overlapping Network Models, and Time-Series Network Analysis are examined in depth for their potential in patient health management. The research highlights the transformative role of XAI in making complex AI models transparent and interpretable, essential for accurate, data-driven decision-making in healthcare. Case studies demonstrate the practical application of these methodologies in predicting diseases, understanding drug interactions, and tracking patient health over time. The study concludes with the immense promise of these advancements in healthcare, despite existing challenges, and underscores the need for ongoing research to fully realize the potential of AI in this field.

Advancing Defect Resolution in Construction: Integrating Text Mining and Semantic Analysis for Deeper Customer Experiences

  • Wonwoo Shin;SangHyeok Han;Sungkon Moon
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.689-697
    • /
    • 2024
  • According to the South Korean Ministry of Land, Infrastructure, and Transport, instances of defect dispute resolutions, primarily between construction contractors and apartment occupants, have been occurring at an annual average of over 4,000 cases since 2014 to the present day. To address the persistent issue of disputes between contractors and occupants regarding construction defects, it is crucial to use customer sentiment analysis to improve customer rights and guide construction companies in their efforts. This study presents a methodology for effectively managing customer complaints and enhancing feedback analysis in the context of defect repair services. The study begins with collecting and preprocessing customer feedback data. Semantic network analysis is used to understand the causes of discomfort in customer feedback, revealing insights into the emotional sentiments expressed by customers and identifying causal relationships between emotions and themes. This research combines text mining, and semantic network analysis to analyze customer feedback for decision-making. By doing so, defect repair service providers can improve service quality, address customer concerns promptly, and understand the factors behind emotional responses in customer feedback. Through data-driven decision-making, these providers can enhance customer rights and identify areas for construction companies to improve service quality.

From Machine Learning Algorithms to Superior Customer Experience: Business Implications of Machine Learning-Driven Data Analytics in the Hospitality Industry

  • Egor Cherenkov;Vlad Benga;Minwoo Lee;Neil Nandwani;Kenan Raguin;Marie Clementine Sueur;Guohao Sun
    • Journal of Smart Tourism
    • /
    • v.4 no.2
    • /
    • pp.5-14
    • /
    • 2024
  • This study explores the transformative potential of machine learning (ML) and ML-driven data analytics in the hospitality industry. It provides a comprehensive overview of this emerging method, from explaining ML's origins to introducing the evolution of ML-driven data analytics in the hospitality industry. The present study emphasizes the shift embodied in ML, moving from explicit programming towards a self-learning, adaptive approach refined over time through big data. Meanwhile, social media analytics has progressed from simplistic metrics deriving nuanced qualitative insights into consumer behavior as an industry-specific example. Additionally, this study explores innovative applications of these innovative technologies in the hospitality sector, whether in demand forecasting, personalized marketing, predictive maintenance, etc. The study also emphasizes the integration of ML and social media analytics, discussing the implications like enhanced customer personalization, real-time decision-making capabilities, optimized marketing campaigns, and improved fraud detection. In conclusion, ML-driven hospitality data analytics have become indispensable in the strategic and operation machinery of contemporary hospitality businesses. It projects these technologies' continued significance in propelling data-centric advancements across the industry.