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An Empirical Data Driven Optimization Approach By Simulating

Human Learning Processes

Jinhwa Kim*

——o Abstract o—

This study suggests a data driven optimization approach, which simulates the models of human learning processes
from cognitive sciences. It shows how the human learning processes can be simulated and applied to solving combina-
torial optimization problems. The main advantage of using this method is in applying it into problems, which are very
difficult to simulate. “Undecidable” problems are considered as best possible application areas for this suggested
approach. The concept of an “undecidable” problem is redefined. The tearning models in human learning and deci-
sion-making related to combinatorial optimization in cognitive and neural sciences are designed, simulated, and im-
plemented to solve an optimization problem. We call this approach “SLO : simulated learning for optimization.” Two
different versions of SLO have been designed : SLO with position & link matrix, and SLO with decomposition algorithm.,
The methods are tested for traveling salespersons problems to show how these approaches derive new solution
empirically. The tests show that simulated learning for optimization produces new solutions with better performance
empirically. Its performance, compared to other hill-climbing type methods, is relatively good.

Keyword : Undecidable Problems, Human Learning, Cognitive Science, Simulated Learning
for Optimization, Combinatorial Optimization, TSP
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1. Introduction

This study suggests a learning approach for
combinatorial optimization problems called simul-
ated learning for optimization. It is based on hu-
man leanﬁng models in the cognitive sciences.
The model not only solves traditional sequencing
optimization problems, it also solves optimization
problems inductively where only a known set of
solution data obtained from observation of the
real system is known.

One assumption that underlies the literature on
combinatorial optimization is that the performance
o a andidate solution can be accurately mea-
sured. Without this assumption, one cannot pro-
gress through the solution space by generating
solutions in search of a good, or perhaps optimal,
solution. This assumption, however, does not hold
in many practical problems.

Physical implementation of this learning appro—
ach is simulated with the ideas of managing arti-
ficial memories, enforcing stimuli, learning sche-
ma, and deducing solutions from the memories.
The sirmulated learning approach has three steps :
1) select a set of examples to be learned from
available data, 2) save information from the sej-
ected examples into artificial memories, and 3)
derive new solutions from the memories.

2. Optimization in Artificial In-
telligence and Undecidable
Problem

Problems

With many traditional algorithmic and heuristic
approaches to solving business problems, there
has been a gap between practice and theory,
mainly due to the complexity and dynamics of
today’s industrial environments. Artificial intelli-

gence techniques have given us more practical
solutions for complicated problems (Kempf 1988).
Learning methods, such as Inductive Learring
Systems, Expert Systems, Neural Networks and
Genetic Algorithms, have been successfully appli-
ed to some combinatorial optimization problems
such as scheduling, sequencing, and list handling
(Pinedo 1992 ; Aytug et al. 1994 ; Colorni et al.
1996). Yet the obstacle remains for traditional and
artificial intelligence techniques for solving opti—
mization problems. Can candidate solutions al-
ways be evaluated acceptably for comparative
purposes? For example, what if the evaluation
function of a traveling salesperson’s problem is
not simply travel distance, but the efficiency of
travel considering the total sales and cost from
the travel? From a business point of view, the
cost/benefit ratio means more than travel distance
alone. In academic research on algorithms and
heuristics for combinatorial optimization problems,
it is often assumed that a candidate solution can
immediately be evaluated accurately, ie., the per-
formance of a candidate solution can be obtained
in a decided fashion. However, as papers on “un-
decidability” and “uncomputability” by Alan Tur-
ing and Godel (Stewart 1991) suggest, there are
well-defined mathematical programs for which
algorithms do not exist. These are called un-
decidable problems and their existence was pro—
ven by Turing (Turing 1936). For these pro-
blems a solution cannot be guaranteed on the ba-
sis of an unambiguous sequence of instructions,
an algorithm. We generalize this notion as un-
decidable problems. We identify the need for
additional research on systematic methods for
problems characterized by high expense to ac-
curately evaluate the quality of a candidate solu-
tion. We make this point by showing that there
are important problems with this character and
that the research literature has largely ignored
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these types of problems. We develop a foundation
for defining what is meant by “high expense to
accurately evaluate the quality of a candidate
solution.” We do this by building upon the se-
minal work of Alan Turing and his notion of un-
decidable problem. It is a paraphrasing Turing's
definition : a problem is undecidable if it is im-
possible to accurately evaluate the quality of a
candidate solution in known finite time. We adopt
Turing’s view, but point out that his definition
excludes many important and practical problems
sharing the characteristic in quotes above. Thus
we expand his definition, and identify new sys-
tematic and effective methods for these types of
problems. We provide practical and important
real-world examples that fit our expanded defi-
nition of undecidable. For each of these examples,
we explain why it does or doesn’t qualify as an
undecidable problem in the sense of Turing.
Many practical problems are undecidable due to
the dynamics and uncertainty of systems. Che-
mical, metal, or food processing can be examples
of problems whose exact solution quality cannot
be determined easily by simulation methods
(Diwekar 1977). In these cases, it is hard to
predict the quality of the products before the
processes are set up and tried. One must try the
processes and then measure the performance of
the output. Our study shows how a biologically
motivated method that we term simulated learn-
ing for optimization can solve undecidable opti-
mization problems. Learning models from cog-
nitive sciences are introduced to support our con-
struction of this simulated learning model.

2.1 The Concept of Undecidability

Despite the development of modern simulation
techniques, there are still many problems that
cannot be well solved with simulation. In this

study, these problems are defined as undecidable
problems, or problems with high degree of un-
decidability. The undecidability of a problem has
been an issue since the 1930s (Bennet 1990).
There have been complaints from industry about
the gap between academic efforts and their use-
fulness in industry (McKay et al. 1983).

2.1.1 The Computability Theories of Alan
Turing

The origin of the concept undecidability can be
traced back to Alan Turing’s Turing Machine
(Alan Turing 1936). He has contributed to the
development of various areas in artificial intelli-
gence (Mackenzie and Sydney 1997). His theory
is considered to have supported the invention of
the first computing machine (Jones 1997). His
idea of computability is that if we can clearly
define procedures to solve a problem, the pro-
cedures can be achieved by computing machi-
nes. Papadimitriou and Steiglitz (1982) describe
Turing’s contribution to the existence of unde-
cidable problems as below :

Are there well-defined mathematical problems
for which there is no algorithm? By brilliant
arguments, Turing showed that such undeci-
dable problems do exist A typical one is the
so—called halting problem : Given a computer
program with its input, will it ever halt?
Turing proved that there is no algorithm that
solves correctly dll instances of this problem
It is possible to find some heuristic ways to
detect some infinite loop patterns by examin-
ing the program and the input, but there will
always be subtleties that escape our analysis.
O course, we may simply run the program
and report success if we reach an end state-
ment. Unfortunately, this scheme is not an al-
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gorithm, because it is not guaranteed itself to
hait!

In this study, we extend Turing definition of
an undecidable problem as follows : A problem is
undecidable if it is expensive (e.g, in terms of
cost and/or time) to accurately evaluate the
quality of a candidate solution. Our definition in-
cludes undecidable problems in the sense of Tur-
ing. for example, a Turing undecidable problem
can be viewed as being impossible to accurately
evaluate the quality of a candidate solution in
finite time. In the case of the halting problem, for
instance, it is impossible to guarantee that a
computer program (i.e, a candidate solution) and
associated input will halt.

2.1.2 Examples of Undecidable Problems

Following are five examples of undecidable
problems. Each is a real world problem where it
is difficult to accurately predict the quality or
efficacy of a candidate solution without extensive
testing and/or usage.

@ Finding an effective algorithm for an NP-
hard problem

Finding an effective algorithm for an NP-hard
problem will be refered to as P. The following
property puts this in perspective : “If there is a
polynomial algorithm for any NP-complete pro-
blem, there are polynomial algorithms for all NP-
complete problems” (Papadimitriou and Steiglitz
1982).

@ Finding the best topology of neural net-
works
Through iterated trials of training, the optimal

setting for momentumn, learning ratio, number of

layers, the number of nodes in each layer of a
neural network is normally found.

@ Items positioning in display

Good display layouts are considered important
to promote the buying motivation of customers.
In practice, a person with experience and intuition
decides the position of each item in a display.

@ Process sequences in chemical engireering
and medical trials
Chemical reactions through a series of pro—
cesses can hardly be simulated with computers.
The evaluation criterion of a sequence, which is a
series of processes, is the quality of thi final
product or the amount of materials it produces.
An example can be the production of a medicine.

® Advertising sequences

An issue in advertising 1s optimally sequencing
a set of advertisements. An evaluation ciiterion
for this sequence is total sales increase or cus-
tomer evaluation of a sequence by survey.

Researchers in various academic fields such as
computer sciences, industrial engineering, food
science, civil engineering, and production mana-
gement have suggested to us various examiples of
undecidable problems.

Undecidability can be understood as a matter
of degree ranging between extremes. A highly
undecidable problem is characterized by the lack
of a generally accepted theory that can he used
to predict the behavior of a candidate solution.

If there is a theory that can be used to
reasonably predict the relative attractiveness of
alternative candidate solutions prior to imple-
mentation, the problem is more decidable. In this
study, we extend the original meaning of un-
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decidable problems to all types of problems for
which traditional simulation methods fail to find
solutions.

There are three major factors in evaluating the
degree of undecidability : uncertainty in the be-
havior of a system (Technical Feasibility), cost
and time in building a simulation system (Econo-
mic Feasibility) and length of time spent evalu-
ating a solution (Operational Feasibility). Our
suggested method, simulated learning for opti~
mization, can be applied to problems with a high
degree of undecidability. We can simply call these
“undecidable problems.”

2.2 Experimental Design Methodologies for
Undecidable Problems

As explained above, undecidable problems are
widespread, important, and particularly challen—
ging. The undecidable character of these pro-
blems is why they are sometimes addressed in an
ad hoc manner through a combination of trial and
error, intuition, and judgment. There is, however,
a well developed, widely used and systematic
approach relevant to some undecidable problems.
This systematic approach is known as experi-
mental design (ED) methodology. The purpose of
this section is to provide a focused crifical analy-
sis of ED with respect to undecidable problems in
general.

A common reason why a candidate solution for
an undecidable problem is expensive to evaluate
1s the lack of a well-developed theory for ex-
plaining and predicting system behavior. Con-
sequently, experiments play a large role in the
investigation of undecidable problems. ED metho-
dologies provide a framework for efficiently desi-

gning a set of experiments to be conducted (e.g.,

set of candidate solutions to be evaluated) and for
interpreting the results. Consider the following
example that illustrates an application of ED
methodologies (Montgomery 1976) :

As an example of an experiment, suppose that
a metallurgical engineer is interested in studying
the effect of two different hardening processes, oil
quenching and saltwater quenching, on an alu-
minum alloy. Here the objective of the experi-
menter is to determine the quenching solution
that produces the maximum hardness for this
particular alloy. The engineer decides to subject
a rumber of alloy specimens to each quenching
medium and measure the hardness of the speci-
mens dfter quenching. The average hardness of
the specimens treated in each quenching solution
will be used to determine which solution is best.

The engineer in this example is facing the un—
decidable problem of determining the best quen-—
ching medium. There are two candidate solutions
(ie, oil quench and saltwater quench), and the
effectiveness of each solution cannot be accur-
ately predicted without time-consuming experi-
mentation. ED methodologies help the engineer in
this example answer such questions as the num-
ber of trials for each medium, the proper ran-
domization of the specimens to be quenched, and
the interpretation of results in the presence of
white noise.

As illustrated in this simple example, ED
methodologies help assess “the effect of several
factors on some phenomena” (Montgomery 1976).

2.3 Learning for Combinatorial Problems in
the Literature

This research is partly inspired and motivated
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by the ideas of heuristics derived from nature
(Colomi et al. 1996). Many heuristic and non-
heuristic methods have been studied to solve
sequencing problems. In recent years many arti—
ficial intelligence techniques have been developed
for hard sequencing problems. Colorni, Dorigo,
Maffioli, Maniezzo, Righini, and Trubian provide a
review in the paper, “Heuristics from Nature for
Hard Combinatorial Problems” (1996). Genetic
Algorithms(Holland 1975 ; Goldberg 1989), Simul-
ated Annealing (Van Laarhoven and Aarts 1987),
Sampling and Clustering (Boender et al. 1986),
Tabu search (Glover 1989, 1990), Neural Net-
works (Hopfield and Tank 1985), and Ant System
(Colorni 1991) are the well-known artificial in-
telligence methods for sequencing problems.
Colorni and et al. (1996) classified these algo—
rithms with four characteristics : (i) constructive
vs. improving algorithms, (ii) non-structured vs.
structured space, (iii) single solution vs. popu-
lation of solutions, and (iv) memoryless vs. me-
morizing algorithms

Leaming mechanisms in scheduling have been
gaining importance since the 1980s. There are
four categories of learning methods : rote learn-
ing, inductive learning (ID3) and neural networks
learning, case-based learning and classifier sys-
tems (Aytug et al. 1994 ; Pinedo 1996). The rote
learning method just memorizes the solution with
good performance and uses this information
without generalizing it. The inductive learning
system derives rules from training examples and
uses these rules to schedule with a new envi-
ronment. Neural networks are also used to predict
a new schedule from known examples. Case-
based learning exploits experience gained from
past similar problem-solving cases. Classifier
systems like genetic algorithms evolve its po-

pulation of solution sequences based on random
crossover and mutation. Among these five me-
thods, genetic algorithms are more often used to
solve sequencing problems like job shop or tra-
veling salesperson’s problems. The other methods
solve reactive scheduling type problems. For ex-
ample, an inductive learning system for flexible
manufacturing suggests the best dispatching rule
among several candidates depending on the given
manufacturing conditions : number of machines in
the system, total buffer size, maximum relative
work load, variability in machine werk load, con-
tention factor, contention factor ratio, flow allo-
(Shaw, Park, and Raman 1992).

Genetic algorithms and neural networks are
learning methods solving sequencing problems
like job shop and traveling salesperson’'s pro—
blems. In genetic algorithms, learning is selecting
high performance sequences from a population
and reproducing new sequences into the next
generation. The learning processes in neural net-
works consist of finding the optimal numeric
representation of relationship nets by modifying
weight values inside the networks through suc-
cessive iterations. A so-called trained network is
the final output from leaming. Neural networks
application to sequencing problems encounters
typical optimality problems when they are applied
to large size problems (Wilson and Pawley 1983).
When the problem size gets large, it needs a lot
of computational effort.

3. Learning Models for Unde-
cidable Problems

This section describes human learning models
in the literature. It shows how these models can
explain the human learning and decision-making



23
—

17ke] Shrakal A Belol el o

A wlolel g o] 43 A3} Wy 123

processes related to combinatorial optimization.
The basic assumption here is that humans can
induce solutions for combinatorial problems by
analyzing information in known examples in a
limited scale. With information and inspiration
from learning processes in cognitive and neural
sciences, we derive a model which simulates
human learning and decision-making processes in
solving combinatorial problems.

3.1 Understanding Human Learning in Cog-
nitive & Neural Sciences

Human cognition allows the handling of a
number of jobs in order : for example finding the
fastest way to get somewhere though appro-
ximation, or to organize a Rubik's Cube. These
are examples of sequencing experience from the
past. In the case of Rubik’'s Cube, assume there
are two competitors, one with high intelligence,
but with no experience of playing the game, and
the other with less intelligence but very ex-
perienced at playing the game. The experienced
competitor may finish the game in a shorter
amount of time because they have schemas in
their memory on the best moves.

Schemas are packets of actions that may be
performed in some situation to achieve an agent’s
goal or to take some action (Turner 1994). In
sequencing cities to form an optimal round-trip
tour, schemas are collections of adjacent cities in
a series, as part of a whole sequence. It can also
be the position of a specific city in a sequence or
the link between two cities. Schemas are defined
as ‘mental constructs that dallow patterns or
configurations to be recognized as belonging to
a previously learned category and which specify
which moves are appropriate for that category”

(Cofer 1975). In genetic algorithms, schemas in
chromosomes or sequences with good perfor—
mance are produced and collected by mutations
and crossover, and the schemas survive in the
evolving population by natural selection. In his
study of expert-novice, Tookey suggests that the
expert has better problem-solving ability through
better performance of schema acquisition (Tookey
1994). The result of their study suggests that the
schemas required for efficient problem solving are
acquired relatively slowly during conventional
problem practice. They also suggest that problem
solving skill may need many schemas, each li-
mited to a narrow set of problems, meaning that
a schema for a problem consists of many small

schemas.

3.1.1 A Conceptual Learning Model in
Cognitive Science

The [Figure 3.1] shows how these schemas are

learned in human memory. The processing of

human cognition goes through sequential stages

(Norman and Bobrow 1975).

organs receive physical signals from outside and

Human sensory

sensory memory stores the information. After
detecting some patterns through the pattern re-
cogrition process, the signal goes through short~
term memory and long-term memory.

Physical Maintenance

ignal
Signals Rehearsal
T
Sensory Short Long
Tras:sr:is:crt)i’on Dlinformation: Reii“i:{i‘on Term P Term
Store 9 Memory Memory

[Figure 3.1]1 A View of Human Cognitive Processing
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The rehearsal processes can recycle material in
short-term memory. The information of a re-
cognized pattern is evaluated for whether it
should be memorized to long term memory or
just be decayed out in short term memory. The
recycle of maintenance of rehearsal is the re-
petition of sending the same information to long
~term memory again and again to be stored. The
information stored in the long-term memory is
used In another new pattern recognition. The
next two steps are big issues. How can we
mcorporate schemas, which lead to sequences
with high performance, into memory? How can
we derive sequences from these schemas? To
handle the first problem, the physical repre-
sentation of our memory in neurology is studied.

3.1.2 Physical Learning Models From Ne-
ural Sciences

Much about the human brain is not yet known,
especially how it works on a physical level. The
brain consists of small processing units called
neurons. The neurons are connected in large ahd
complex networks. The networks consist of den-
drites, which transmit messages across various
paths in the networks. The interconnected net-
works around a neuron are called a synapse or
synaptic connection. A neuron has activity in the
form of chemical or electrical impulses. The sy-
napses bring the input to a neuron in the form of
either a chemical or an electrical impulse. The
input brought to a neuron either excites or in-
hibits the neuron’s electrical or chemical activity.

The discovery of chemical or organic sub-
stances in the human brain in the 1930s promoted
the study of brain and memory, producing many
clinical, neuropsychological, biophysical, and ne-
urobiological findings about memory and learning

in the brain (Brazier 1977). The components of
electrical stimuli, protein synthesis, hormones,
enzymes and other chemical reactions work for
the processes in memory (Kumar 1980).

Capputo and Marsan (1983) show the electron
micrograph of a synaptosome from the brain. It
shows the synaptosomal membrane is stained
dark in the cortex with strong outer stimuli. The
strength and frequency of the stimuli differentiate
the amount of chemicals in the related area of the
brain.

In traditional neural network systems, the val-
ues are stored in the networks to represert the
input and output relationship. Neural netwrorks,
however, do not perfectly simulate human learn~
ing and prediction processes. One of the propblems
in using neural networks is the need for upclating
on the basis of new information. If new infor-
mation needs to be added to the existing net-
works, the learning processes should be repeated.
This is one difference between the leaming pro-
cess of neural network and the learning processes
of humans. The learning processes in humans are
cumulative, dynamic and complex. This study
uses one of these characteristics of human learn-
ing processes, that can not be found in neural
networks.

3.2 Deriving a Model, Simulated Learning for
Optimization

From Norman & Bobrow's model in {Figure
31], a conceptual model in [Figure 3.2] for si-
mulated learning for optimization, which can also
be called simulated schema learning is derived. It
is simply simulating the processes of human
learning and inducing sequences in their model.
The first step for this model is to prepare a set
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of sequences. The performance of these sequen-
ces is evaluated in the next step. In job shop
problems, sequences are a series of jobs, and
their performances are evaluated on the basis of
a merit measure such as completion time, total
tardiness, or weighted tardiness. For the traveling
salesperson’s problems, evaluation of the sequence
is a travel distance or time. The assumption here
is that the sequences with high performance con—
tain schemas, which lead to sequences with high
performance. Examples with good performances
are essential in deriving good sequences.

Step | . Step II Step Il Step IV
Prepare Evaluate Encorporate Make or
A Set of Example of Sequences Derive
Sequencing Sequences N With high , Sequences
Examples With Performance From
Evaluation Into Learned
Function Memory Memory

Sequences Derived

[Figure 3.2] A Conceptual Model for Simulated
Learning for Optimization

Once we memorize the good schemas in the
examples, we can derive sequences with high
performance. The organizational structure of the
proposed approach is portrayed in [Figure 3.2].

3.2.1 Learning of Schemas

The connectivity model in long—term memory
of humans is based on the assumption that highly
inter-connected facts are stored in long term
memory (Klimesch 1994). [Figure 3.1] shows that
when sensory information is received by sensory
organs, patterns or features are detected, and this
information activates the related region in long-
term memory (Norman and Bobrow 1975).

The electrical or chemical signal physically
changes the chemical compounds in memory
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space in the brain. The stronger the signal, the
higher the frequency becomes. The shorter the
interval of frequency, the more chemical changes
in the related region in the memory. In this
study, two memory matrices store information
from selected sequencing examples. The position
matrix <Table 3.1> contains the position infor-
mation of each element (city or job) in a sequen-
ce with high performance. The link matrix in
<Table 3.3> stores the link information between
each city or job in the sequence. It is our as-
sumption that humans use both position and link
information in high quality sequences to derive a
good sequence.

We simulate these processes with two dimen-—
sional memory spaces. In the position matrix, the
columns show the jobs or cities in sequences.
The rows show positions of each job or city in
sequences. The memory M, a matrix repre-
sentation of human memory space for seguencing,
has n columns and n rows. Inside the memory
matrix, each cell has a value, my (first subscript,
i is for columns and second j is for rows) re—
presenting the amount of stored information from
outside stimuli. The comparatively large values
represent schemas in the sequences. Initially the
memory matrix contains values other than all
ZET0S.

o Stimuli Function 4 of
s;= 1/(f(s;) — average(f(s;)))

The value of 45 considers the notion that “the
stronger the stimuli is, the more electrical or
chemical activity the region of memory in the
brain will have”. In traveling salespersons pro—
blems, stimuli is comparative superior in travel
time. The shorter the distance, the better the
performance of a solution is.



3.2.2 Derivations of Solutions from Me-
mory Matrices

Analyzing learned memory matrices to derive a
desirable sequence is the next step. We first
derive a sequence from a position matrix and
improve the performance of the sequence by
changing the sequence with link information in a
link matrix.

Deriving a Sequence from Position Matrix

<Table 3.1> shows a learned memory matrix
from 200 randomly generated examples. The pro-
blem here solves- a traveling salesperson’s pro-
blem that has 8 cities with a fixed starting city.
The cities are indexed from 1 to 7, excluding the
starting city. The index for the starting city is 0
and it is not shown in the memory matrix below.
Since the starting city is fixed, we solve the
sequence of the remaining 7 cities.

(Table 3.1 An Example of Learned Position Matrix

1 2 3 4 0 6 7
1 0 0 0| 10| 36| 47| 148
2 0| 22| 36| 34120 | 13| 13
3 58 | 13 [119 ] 26 | 13 0 10
4 |12 70| 49 0 10 0 0
5 60 89| 23| 48| 10| 10 0
6 10 36| 13| 75| 36| 55| 10
7 0] 10 0{ 57| 13101 | 60

* Column : the number of index for each city
* Row : the position in the derived sequence

Deriving Good Sequences from Memory
Matrices

The formal procedure for deriving solutions is
given below and is parameterized by a value for
P. With different p values in step 2 we normally
have different sequences of solutions. The se-
quence with best performance is selected to be
refined in the next step. As p gets larger to oo,

S N T TR DT

the solution from this method will become more
like that obtained from the method previous
introduced with <Table 3.1>.

Step 1 : Calculate weights for each city.
wi=@2*1-1D/C*N)(i=1:N)
N : Number of cities
For the example,wi=1/14, w2=3/14,
W3=5/l4, W4=7/l4,W5:9/14, W6 = 1
/14,and w7=13/14

Step 2 : Calculate s;, sums of normalized values
for each row(or column)with different
power.

N x?

S;i= 12 I
PIEH
1

M : integer number
If p=2 with the problem, an example
of the calculation of s; is below :

W .
p=1:M)

s1=(0%%1/14+0°%3/14+0*+5/14 +
10°%7/14+362%9/14+47 11/ 14 +
148 %13/ 14).

Step 3 : Assign numbers from 1 to N for si(i=
1 :N) in ascending order.
We may have different sequences with

different p values.

The suggested solution derived from Table 3.1
using above three steps is {0 -4-5-3 -6 -~
2-7-1)

3.2.3 Improving the Quality of Solution
Using Link Matrix
Once a solution sequence is derived from the
position matrix, the link matrix can help the
solution improve the performance of the sézquence
by modifying its sequence with the link infor-
mation. The following steps show how ta derive
a new solution from the position matrix and the
link matrix together with a modified data set
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from Traveling Salespersons Problem with 10
cities. This data set is from Hopfield and Tank’s
paper, where they used neural networks to solve
this problem (Hopfield and Tank 1985). One
starting point, with coordinate (0.1, 0.5), is added
to the problem, changing the TSP to 11 cities
TSP with a starting city and no return. Steps of
deriving solutions using the position matrix in
<Table 3.2> and the link matrix in <Table 3.3>
are shown next.

(Table 3.2> Position Matrix for Modified Hopfield
and Tank's TSP Problem

415]6
6132]6
46 27
32 40
3 47
20 40
17 42
31 2
1613935

41

38

10

G BB |8 (8|

Nelifo <N ENE ForREe) BN ISR §EON Fo

30| A
4315 |

* column : position in a sequence
* oW . city index or number

BI8=R|IRIB|S|E(&|R(~
[ BB |28 R (B|F |
21888 |8|B|8|R(R|E|w
RIS |L|D5|8|R 88|~
BIRK|B B|ER|R|R|B|xe|x
RFB (K2R |BIN 8 |B|e
S|&18 |5 |82 |85 (R

—_
<

(Table 3.3> A Link Matrix for Modified Hopfield
and Tank's TSP Problem

31415161 718]19110

112
O 64| 36| 8 76| 32| 6| 19 8] 12| 13
1] 0] 43)31[41] 48] 21| 36| 24] 40| 3
21 40| 0127|2912 13| 12} 18| 31| 24
3139|131 0] 37] 12] 12| 14| 19| 16| 32
41 51| 16| 20] O[114] 26| 28| 8] 20| 17
5[ 32 9[10[8]| 0] %) 40) 16] 11| 14
61 20) 10 11) 23| 47| 0] 69| 78] 22| 25
71 28| 17| 15| 17| 30 64| 0] 71| 30| 46
8 15| 11| 8| 9] 15] 72| 4] 0] 13| 5%
9 20 30[ 28| 15] 20| 27| 42] 50| 0| &
10 35] 40) 15] 171 15| 25| 38| 51| &] 0

* column : city index or number

* low : city index or number

(row 0 means link between start city to the rest of
the cities)

Step 1 : Derive a solution from a learned me-
mory matrix from 2,000 randomly generated trial
solutions. About 10% of the sequences with good
performance are memorized into a memory ma-
trix. The starting point is not shown in the po-
sition matrix as it is already fixed. The derived
sequence from the above position matﬁx in
<Table 32> is {3-2-1-4-5-6-8-10-9-T7}
with a travel distance of 2.74582. '

Step II : Prepare link information as in <Table
34> from the link matrix in <Table 3.3> to
change the suggested sequence found in previous
step. For each row in <Table 34>, find the lar-
gest number, which is also a summed stimulus,
and its corresponding link of two cities, row and
column number where it is located in the link
matrix Give ranks to each of these rows by

ascending order.

Step IIT : Apply the information in <Table 3.4>
to the sequence derived in Step I By ascending
order, change the sequence by applying the link

information in each row one by one.

We first apply the link information in row 2
from <Table 34> to a given sequence solution.
Row 2 has rank 1 and it suggests to link city 1
and city 5. Two possible sequences can be cre-
ated using this information. Move city 5 next to
city 1 or move city 1 before city 5, creating two
different sequences of {3-2-1-5-4-6-8 -10
-9-Tand {3-2-4-1-5-6-8-10-9-7}

If any of these newly generated sequences has
better performance than the original sequence,
this new sequence will replace the old solution.
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As both derived sequences in this case have a
performance worse than the original sequence,
the old sequence still remains as the solution
sequence.

When we apply the next link information of
linking city 7 to city 8 we have two sequences
of 3-2-1-4-5-6-7-8-10-9} and {3-2-
1-4-5-6-7-8-10-9}). The former has a
performance of 274582, which is better than the
previous solution. The new solution is now {3-2
-1-4-5-6-7-8-10-9)}, which will replace
the old solution sequence. It should continue to be
refined. The link information in the third ranked
row makes the solution sequence {3-2-1-4-5
-6-7-8-9-10} with travel distance of 2.59902.

{Table 3.4> Link Information from a Link Matrix

Rank Value Row Column
4 78 0 3
1 48 1 5

10 127 2 3
1 131 3 2
9 114 4 5
80 5 4

5 78 6 8
2 71 7 8
3 73 8 9
7 & 9 10
8 8 10 9

After repeating this with more link information,
we finally derive a sequence of {3-2-1-4-5-
6-7-8-9-10} as the suggested solution se-
quence with travel time 2.59902. Results from
experiments on more examples are discussed in

section 4.

SRR AR |

3.24 A Decomposition Algorithm for Si-

mulated Learning for optimization

A decomposition approach is combined with the
main idea of simulated learning for optimization
to approximate solutions for a large size prcblem
such as a TSP with a large number of cities.
When a problem has a large solution space, one
of the approaches can be dividing the space into
sub areas and searching each sub spaces. In a
combinatorial problem, such as a TSP, the sub
space can be divided by each element in a
sequence such as putting cityl as the first city to
visit, city 2 as the first city to visit, etc.

With the decomposition algorithm, the number
of elements in a solution is increasing by
choosing the best city to visit next. It is a
branching method by choosing the next best
element into the partial solution. For a TSP, a
city is selected to be the first city to visit. If the
trip is round trip, you can choose any city as the
first city to visit. If you choose the first city to
visit, fix this city as the first element in the
solution and randomly generate a number of sol-
utions with the same city in their first position in
the solution. The solutions with high performance
from above random solutions are selected to store
schemas into memory matrix. Analysis of these
schemas suggests which city should be visited
next. Now the first and second cities are fixed.
Then, choose the third city to branch. These
processes are repeated until all cities are visited.
For a problem with large solution space, chopsing
one element, one city in the TSP, will reduce the
solution space by 1/n, where n is the size of a
problem. This is a divide-and-conquer approach.
In each iteration, it casts a net into the solution
space by generating solutions randomly and
catches the best element to fill in rext, the next
city to visit in traveling salespersons probleim.
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4. Design of Tests and Anal-
ysis of Results

The primary purpose of the experiments is to
assess the efficacy of simulated learning for
optimization in identifying new and effective
alternative solutions by understanding the “sche-
mas” in the experiment results (in this case, ex-
periment results refer to the costs of the many
candidate solutions that were evaluated). The idea
here is that SLO appears good at distilling the
“schema” (and finding better solutions) of a
“decidable” problem with a complex structure
(e, NP-hard), then SLO can be effective for
distilling the “schemas” from the performance of

candidate solutions to undecidable problems.

4.1 Design of the Tests

Two types of simulated learning for opti-
mization methods are designed. One is a simple
simulated learning for optimization, and the other
is simulated learning for optimization with deco-
mposition algorithms. In evaluating the method of
simulated learning for optimization, we compare
the performance of them with that of random

search, simple neighborhood search, and a genetic

algorithm. We first measure the convergence time '

for a genetic algorithm to reach its solution. The
genetic algorithm normally takes an enormous
amount of time to escape local optima once its
population gets homogeneous. For a traveling
salespersons problem of 10 or 11 cities, a genetic
algorithm takes about 1150 milliseconds to get a
solution. Within this time limit for their search,
the performance, which is a total travel distance,
of these 5 methods is examined. Random search

just randomly generates solutions in a given time

and the best one of them is selected as a
solution. Neighborhood search continues its sear-
ch until there is no further improvement from the
previous solution to the next solution.

The experiments were carried out to find the
best model for simulated learning for optimization.
Various stimuli functions such as f(y)=1/(1+
e’) have been evaluated to normalize the
performance of the selected solutions for SLO.
Tests on possible combinations of different me-
morizing methods and stimuli functions have been
tried. When deriving solutions from a set of
known solution examples, there must be reason—
able number of examples. For example, for a
traveling salesperson’s problem with 11 cities, at
least 500 sequences are needed to generate
solutions with good quality. If the number of
sample size is too small, it is hard to derive
solutions with good quality. Different sample
sizes have been tested to determine a minimum
sample size for simulated learning for optimi-
zation with decomposition algorithms. The fun-
ction below “# of examples needed in each iter-
ation of m=500+(m-6)* 1000, where m de-
creases 1 to 6 (n - the number of cities in TSP ;
n>5)" is used to find the number of sequencing
examples needed in each iteration with different
number of cities for the method The random
generation method is selected to generate se-
quencing examples. Compared to neighborhood
search and regional best, it supplies diverse
sequencing examples from a broad solution

space.

4.2 Preparing a Set of Selected Examples to
Obtain Required Schemas

Three generation methods for preparing a set



of sequences with high performances are in-
troduced in this study.

Generation Method 1 : Random Generation

This method randomly generates n sequences
and memorizes the information from the best k& %
sequences of them. The larger n is, the better
sequences we can derive, but the more com-
putation time is needed to induce optimal se-
quences. The sequences with their performance
above average are used as examples for learning.
The advantage of this method is its simplicity.

Generation Method 2 : Selecting the Best
Neighbor in Each Step of Generic Neigh-
borhood Search

Neighborhood search method searches its nei-
ghbor region from a random sequence as a star-
ting point. The next search starts again from the
best sequence in the neighbor region. Whenever
it finds better neighbors, it chooses the best
among them as next search point. The idea is to
collect the best neighbor as a learning example
when it searches the neighborhoods.

Generation Method 3 : Selecting Regional
Best from Random Generation

N sequencing points in the solution space are
produced randomly. The best neighbors for each
of these n points are used for learning examples.

e Data Set : The number representing each data
set

* RS : Random Search

¢ GA : Genetic Algorithm with time limit of 1150

¢ SLO : Simulated Learning for Optimization

¢ SLOD : SLO with Decomposition Algorithms

e The Best Method : The best method for a

given data set

Table 4.t> The Performance Comparison of Four

Methods
2 s | ca | sLo | stop | e Ee
0 |284 252308 | 259902 [251257 | SBLD
1 268 | 250374 | 2461 (229645 | SBLD
2 [227 | 215083 | 214484 [20395 | SBLD
3 | 32508 | 349404 | 313 |258087 | SBLD
4 |32 |283%5 | 30154 28912 | GA
5 |325 |294807 309 |286831 | SBLD
6 | 27644 | 24616 | 24616 |2588867| GA. SBL
7 | 292417 | 256660 | 296416 |256677 | SBLD
8 | 306616 | 265667 | 26068 |285429 | GA
9 | 273579 | 237902 | 271019 |217771 | SBLD
10 | 357114 | 29188 | 316 |288705 | SBLD
11 | 265585 | 250606 | 289841 |238122 | SBLD
12 | 34268 | 293043 | 273013 | 285295 |  SBL.
13 | 27685 | 257924 | 290974 |24948 | SBLD
14 | 3.06165 | 234199 | 231738 |2.31735 |SBL, SBLD
15 | 305218 | 255964 | 263435 | 25594 | GA, SBLD
16 | 27579 | 246766 | 26843 |245892 | SBLD
17 [3245 | 287183 | 279829 |282145 | SBL
18 |33 | 314465 | 340083 328838 | GA
19 | 3283 | 276048 | 317751 |27474 | SBLD
N | 2772 | 243752 | 275707 |2.46363 | GA
21 | 3148 | 264008 | 3.19187 |332337 | GA
2 | 28879 | 267661 | 2.28619 |2.20662 | SBLD
% | 246013 | 234123 | 193183 |221423 |  SBL
24 | 31309 | 263061 | 261993 |2.97254 |  SBL
% | 3289 | 248862 | 270783 |248862 | GA, SBLD
2 | 3302 | 311134 | 332064 |308%8 | SBLD
o | 2500 | 224522 | 2.15001 |2.16373 |  SBL
28 | 2 7531 | 211891 | 260820 |2.3%508 | GA
2 |314 | 291991 | 371248 [299734 | GA
20 | 3247 | 30706 |3.15220 |296049 | SBLD

This is a hybrid method of generation method
1 and generation method 2 explained previously.
The problem tested here is a TSP with the
objective function of minimizing the total travel
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distance. A set of TSP is randomly generated
and the five different methods solve the problems
in a limited time.

4.3 Results from Tests

The test results reported in <Table 41> show
that simulated learning for optimization, with or
without a decomposition algorithm, produces solu-
tions with good performance compared to existing
local search methods such as random search,
neighborhood search and genetic algorithm. In
modern industry, producing a solution with rea-
sonable quality in a reasonable time is sometimes
more important than producing solution with
better quality in a lot more time. When there is a
tight time limit on the need for a solution, this
approach can be valuable as it produces solutions
in a comparatively short time. If we evaluate the
efficiency of methods, the ratio between the qual-
ity of solution and computing time should be
considered. In many practical applications, the
time needed to improve the quality of a solution
by the last small percentage surpasses the benefit
from the improvement. When the weight on the
time factor is comparative large, the methods
suggested in this study may be more efficient
than other methods. In environment of modern
industry, which is dynamically changing, sug-
gesting solutions in real time is important feature.
Simulated learmning for optimization is also an
efficient tool when there are known set of trial
solutions available from past history, and there
need to derive a better solution from these past
trials. SLO analyzes these past trial solutions and
suggest a new solution with better performance
with high probability by combining schemas in
them.

5. Conclusion

In this study, we have defined a problem, for
which we cannot predict an output with an input
unless we try the system, “an undecidable pro-
blem” or “a problem with a high degree of un-
decidability.” This study has introduced “simul-
ated leamning for optimization” for highly unde-
cidable problems. Examples of highly undecidable
problems are sought in our real world. From the
literature review on combinatorial optimization
and on experimental design methodologies, we
conclude that these methods in the literature are-
not suitable methods for the highly undecidable
combinatorial problems. However, from the liter—
ature review on human learning, we concluded
that humans can roughly solve a simple com-—
binatorial problem such as a sequencing problem
based on learning from known examples. The
theories on schemas support our assumption that
schemas in high quality solutions can be iden-
tified and combined to produce new solutions
with better quality. The learning models in hu-
man learning and decision-making related to
combinatorial optimization in cognitive and neural
sciences were designed and simulated to solve
the problem. We call the approach SLO (Si-
mulated Learning for Optimization).

The study shows how simulated learning for
optimization solves sequencing style problems by
inducing solutions from memory matrices in a
limited number of trials. It also shows how the
approach derives solutions from a set of known
solutton examples. The induced solution from the
method is better than the best one in the known
examples with better chance. To solve combi~
natorial problems such as traveling salespersons

problems, a modified version of simulated learn-
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ing for optimization called SLOD (Simulated
Learning for Optimization with a Decomposition
Algorithm) is considered. This is an empirical
branching method that produces a whole solution
by finding the best element in a partial list as in
the branch and bound method. It is better in its
performance than simulated learning for opti-

mization.
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