• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.044 seconds

Development of relational river data model based on river network for multi-dimensional river information system (다차원 하천정보체계 구축을 위한 하천네트워크 기반 관계형 하천 데이터 모델 개발)

  • Choi, Seungsoo;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.335-346
    • /
    • 2018
  • A vast amount of riverine spatial dataset have recently become available, which include hydrodynamic and morphological survey data by advanced instrumentations such as ADCP (Acoustic Doppler Current Profiler), transect measurements obtained through building various river basic plans, riverine environmental and ecological data, optical images using UAVs, river facilities like multi-purposed weir and hydrophilic sectors. In this regard, a standardized data model has been subsequently required in order to efficiently store, manage, and share riverine spatial dataset. Given that riverine spatial dataset such as river facility, transect measurement, time-varying observed data should be synthetically managed along specified river network, conventional data model showed a tendency to maintain them individually in a form of separate layer corresponding to each theme, which can miss their spatial relationship, thereby resulting in inefficiency to derive synthetic information. Moreover, the data model had to be significantly modified to ingest newly produced data and hampered efficient searches for specific conditions. To avoid such drawbacks for layer-based data model, this research proposed a relational data model in conjunction with river network which could be a backbone to relate additional spatial dataset such as flowline, river facility, transect measurement and surveyed dataset. The new data model contains flexibility to minimize changes of its structure when it deals with any multi-dimensional river data, and assigned reach code for multiple river segments delineated from a river. To realize the newly developed data model, Seom river was applied, where geographic informations related with national and local rivers are available.

Recommendations Based on Listwise Learning-to-Rank by Incorporating Social Information

  • Fang, Chen;Zhang, Hengwei;Zhang, Ming;Wang, Jindong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.109-134
    • /
    • 2018
  • Collaborative Filtering (CF) is widely used in recommendation field, which can be divided into rating-based CF and learning-to-rank based CF. Although many methods have been proposed based on these two kinds of CF, there still be room for improvement. Firstly, the data sparsity problem still remains a big challenge for CF algorithms. Secondly, the malicious rating given by some illegal users may affect the recommendation accuracy. Existing CF algorithms seldom took both of the two observations into consideration. In this paper, we propose a recommendation method based on listwise learning-to-rank by incorporating users' social information. By taking both ratings and order of items into consideration, the Plackett-Luce model is presented to find more accurate similar users. In order to alleviate the data sparsity problem, the improved matrix factorization model by integrating the influence of similar users is proposed to predict the rating. On the basis of exploring the trust relationship between users according to their social information, a listwise learning-to-rank algorithm is proposed to learn an optimal ranking model, which can output the recommendation list more consistent with the user preference. Comprehensive experiments conducted on two public real-world datasets show that our approach not only achieves high recommendation accuracy in relatively short runtime, but also is able to reduce the impact of malicious ratings.

A Novel Duty Cycle Based Cross Layer Model for Energy Efficient Routing in IWSN Based IoT Application

  • Singh, Ghanshyam;Joshi, Pallavi;Raghuvanshi, Ajay Singh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1849-1876
    • /
    • 2022
  • Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.

Towards Indonesia's Future: Embracing Mobile Money Distribution with the Technology Acceptance Model Approach

  • Ricardo INDRA
    • Journal of Distribution Science
    • /
    • v.22 no.7
    • /
    • pp.43-51
    • /
    • 2024
  • Purpose: The primary purpose of this study is to examine the influence of the Technology Acceptance Model (TAM) on the use of mobile money in Indonesia. The acceptance of technology has brought changes to society where the application of technology is aimed at identifying the best solution among the various existing alternatives. There are two types of electronic money: chip-based and server-based electronic money. Server-based electronic money is found on mobile phones. The Indonesian government has encouraged the use of electronic money and launched Less Cash Society to create a secure, efficient, and smooth payment system. Research design, data, and methodology: This study collected quantitative data from users of server-based electronic money through surveys conducted based on the sample size. The data were processed using SEM LISREL 8.70. Results: the results show that each of the TAM's fundamental elements has a significant impact. Perceived ease of use and perceived usefulness are able to encourage attitude toward using and behavioral intention to use towards actual use. Conclusions: The distribution of mobile money has a positive impact on society. Hence, mobile money providers must simplify access-recommendations made to strengthen the acceptance of mobile money via Perceived Ease of Use and Perceived Usefulness.

Assessment and Improvement of Condensation Models in RELAP5/MOD3.2

  • Choi, Ki-Yong;Park, Hyun-Sik;Kim, Sang-Jae;No, Hee-Cheon;Bang, Young-Seok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.585-590
    • /
    • 1997
  • The condonation models in the standard RELAP5/MOD3.2 code are assessed and improved based on the database, which is constructed from the previous experimental data on various condonation phenomena The default model the laminar film condonation in RELAP5/MOD3.2 does not give any reliable predictions, and its alternative model always predicts higher values than the experimental data Therefore, it is needed to develop a new correlation based on the experimental data of various operating ranges in the constructed database. The Shah correlation, which is used to calculate the turbulent film condensation heat transfer coefficients in the standard RELAP5/MOD3.2, well predicts the experimental data in the database. The horizontally stratified condonation model of RELAP5/MOD3.2 overpredicts both cocurrent and countercurrent experimental data The correlation proposed by H.J.Kim predicts the database relatively well compared with that of RELAP5/MOD3.2 The RELAP5/MOD3.2 model should use the liquid velocity for the calculation of the liquid Reynolds number and be modified to conifer the effects of the gas velocity and the film thickness.

  • PDF

Development of a Grid Based Two-Dimensional Numerical Method for Flood Inundation Modeling Using Globally-Available DEM Data (범용 DEM 데이터를 이용한 2차원 홍수범람 모형의 개발)

  • Lee, Seung-Soo;Lee, Gi-Ha;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.659-663
    • /
    • 2010
  • In recent, flood inundation damages by hydraulic structure failures have increased drastically and thus a variety of countermeasures were needed to minimize such damages. A real-time flood inundation prediction technique is essential to protect and mitigate flood inundation damages. In the context of real time flood inundation modeling, this study aims to develop a grid based two-dimensional numerical method for flood inundation modeling using globally-available DEM data: SRTM with $90m{\times}90m$ spatial resolution. The newly-developed model guarantees computational efficiency in terms of geometric data processing by direct application of DEM for flood inundation modeling and also have good compatibility with various types of raster data when compared to a commercial model such as FLUMEN. The model, which employed the leap-frog algorithm to solve shallow water and continuity equations, can simulate inundating flow from channel to lowland and also returning flow from lowland to channel by comparing water levels between channel and lowland in real time. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results had good agreements with the field-surveyed data in terms of inundated area and also showed physically-acceptable velocity vector maps with respect to inundating and returning flows.

  • PDF

Application of time series based damage detection algorithms to the benchmark experiment at the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan

  • Noh, Hae Young;Nair, Krishnan K.;Kiremidjian, Anne S.;Loh, C.H.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.95-117
    • /
    • 2009
  • In this paper, the time series based damage detection algorithms developed by Nair, et al. (2006) and Nair and Kiremidjian (2007) are applied to the benchmark experimental data from the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan. Both acceleration and strain data are analyzed. The data are modeled as autoregressive (AR) processes, and damage sensitive features (DSF) and feature vectors are defined in terms of the first three AR coefficients. In the first algorithm developed by Nair, et al. (2006), hypothesis tests using the t-statistic are applied to evaluate the damaged state. A damage measure (DM) is defined to measure the damage extent. The results show that the DSF's from the acceleration data can detect damage while the DSF from the strain data can be used to localize the damage. The DM can be used for damage quantification. In the second algorithm developed by Nair and Kiremidjian (2007) a Gaussian Mixture Model (GMM) is used to model the feature vector, and the Mahalanobis distance is defined to measure damage extent. Additional distance measures are defined and applied in this paper to quantify damage. The results show that damage measures can be used to detect, quantify, and localize the damage for the high intensity and the bidirectional loading cases.

ConvXGB: A new deep learning model for classification problems based on CNN and XGBoost

  • Thongsuwan, Setthanun;Jaiyen, Saichon;Padcharoen, Anantachai;Agarwal, Praveen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.522-531
    • /
    • 2021
  • We describe a new deep learning model - Convolutional eXtreme Gradient Boosting (ConvXGB) for classification problems based on convolutional neural nets and Chen et al.'s XGBoost. As well as image data, ConvXGB also supports the general classification problems, with a data preprocessing module. ConvXGB consists of several stacked convolutional layers to learn the features of the input and is able to learn features automatically, followed by XGBoost in the last layer for predicting the class labels. The ConvXGB model is simplified by reducing the number of parameters under appropriate conditions, since it is not necessary re-adjust the weight values in a back propagation cycle. Experiments on several data sets from UCL Repository, including images and general data sets, showed that our model handled the classification problems, for all the tested data sets, slightly better than CNN and XGBoost alone and was sometimes significantly better.

Artificial-Neural-Network-based Night Crime Prediction Model Considering Environmental Factors

  • Lee, Juwon;Jeong, Yongwook;Jung, Sungwon
    • Architectural research
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • As the occurrence of a crime is dependent on different factors, their correlations are beyond the ordinary cognitive range. Owing to this limitation, systems face difficulty in correlating various factors, thereby requiring the assistance of artificial intelligence (AI) to overcome such limitations. Therefore, AI has become indispensable for crime prediction. Crimes can cause severe and irrevocable damage to a society. Recently, big data has been introduced for developing highly accurate models for crime prediction. Prediction of night crimes should be given significant consideration, because crimes primarily occur during nights, when the spatiotemporal characteristics become vulnerable to crimes. Many environmental factors that influence crime rate are applied for crime prediction, and their influence on crime rate may differ based on temporal characteristics and the nature of crime. This study aims to identify the environmental factors that influence sex and theft crimes occurring at night and proposes an artificial neural network (ANN) model to predict sex and theft crimes at night in random areas. The crime data of A district in Seoul for 12 years (2004-2015) was used, and environmental factors that influence sex and theft crimes were derived through multiple regression analysis. Two types of crime prediction models were developed: Type A using all environmental factors as input data; Type B with only the significant factors (obtained from regression analysis) as input data. The Type B model exhibited a greater accuracy than Type A, by 3.26 and 9.47 % higher for theft and sex crimes, respectively.

An Architecture Model on Artificial Intelligence for Ground Tactical Echelons (지상 전술 제대 인공지능 아키텍처 모델)

  • Kim, Jun Sung;Park, Sang Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.513-521
    • /
    • 2022
  • This study deals with an AI architecture model for collecting battlefield data using the tactical C4I system. Based on this model, the artificial staff can be utilized in tactical echelon. In the current structure of the Army's tactical C4I system, Servers are operated by brigade level and above and divided into an active and a standby server. In this C4I system structure, the AI server must also be installed in each unit and must be switched when the C4I server is switched. The tactical C4I system operates a server(DB) for each unit, so data matching is partially delayed or some data is not matched in the inter-working process between servers. To solve these issues, this study presents an operation concept so that all of alternate server can be integrated based on virtualization technology, which is used as an source data for AI Meta DB. In doing so, this study can provide criteria for the AI architectural model of the ground tactical echelon.