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a b s t r a c t

We describe a new deep learning model - Convolutional eXtreme Gradient Boosting (ConvXGB) for
classification problems based on convolutional neural nets and Chen et al.’s XGBoost. As well as image
data, ConvXGB also supports the general classification problems, with a data preprocessing module.
ConvXGB consists of several stacked convolutional layers to learn the features of the input and is able to
learn features automatically, followed by XGBoost in the last layer for predicting the class labels. The
ConvXGB model is simplified by reducing the number of parameters under appropriate conditions, since
it is not necessary re-adjust the weight values in a back propagation cycle. Experiments on several data
sets from UCL Repository, including images and general data sets, showed that our model handled the
classification problems, for all the tested data sets, slightly better than CNN and XGBoost alone and was
sometimes significantly better.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Learning models are key to solving some machine learning
problems, so, we must focus on learning models. Classification is a
major topic for machine learning and we must use the appropriate
learning criteria for predicting a class label e this is called super-
vised learning. Classification problems may be found in image
processing [1,2], text and document classification [3,4], intrusion
detection [5,6], medical diagnosis [7e10] and pattern recognition
[11e14]: these problems may be either binary or multi-class.
Currently, the world is in an enormous store of information and
much of it is very complex with data having many features [15e17].
We are all affected by this data and significant knowledge and
understanding may be found in it, if analysed appropriately. In
recent years, deep learning has become widely used as a learning
model and has led to striking advances in fields such as computer
suwan), saichon.ja@kmitl.ac.
), goyal.praveen2011@gmail.
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vision [18e20] and classification problems [21e23], for example,
Mironczuk and Protasiewicz have surveyed its application to text
classification [3]. In solving machine learning problems, feature
learning has become a driving force for success [24]. Generally, the
mass of information in the real world has made it difficult for
models to discover the key features in any particular problem. For
this reason, common methods rely on manual feature engineering,
which leads to features that may not aid the best solution, because
the external environment may bias some features and lead to
inappropriate feature additions or deletions. Automatic feature
learning can solve this problem; it allows the system to automati-
cally discover key features from raw data. Therefore, we need to
realize the importance of effective models and also the ability of
automatic feature learning to find a complete model. However,
most models, including the traditional shallow models [25] and
deep learning [26e28], still use only a single model for training.

We based our work on two hypotheses:

1. The capabilities of a single model may not be sufficient to meet
the accuracy required for various problems.

2. If we analyze themodel carefully and fairly, then eachmodel has
its own advantages and disadvantages, if we can discover them,
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we can take advantage of them to develop better models, and
avoid the disadvantages. Thus, we look for those advantages.

We describe a Convolutional eXtreme Gradient Boosting
(ConvXGB) algorithm as a new deep learning model for classifica-
tion problems. ConvXGB combines the performance of a Convolu-
tional Neural Network (CNN) [29] and eXtreme Gradient Boosting
(XGBoost) [30], which, as we will show, leads to high accuracy, and
a state-of-the-art performance. A key feature of ConvXGB is a sys-
tematic strategy for choosing these two models:

1. XGBoost, commonly used by data scientists, is a scalable ma-
chine learning system for tree boosting which avoids overfitting.
It performs well on its own and have been shown to be suc-
cessful in many machine learning competitions. However, we
observe that this model is still unclear for feature learning.

2. We add clarity by adding automatic feature learning with CNN, a
class of deep learning, containing hierarchical learning in
several different layers.

To evaluate ConvXGB and show that it will meet our goal to not
only solve image classification problems, we included some addi-
tional general classification problems applicable to other tasks.

The major contributions of this paper are:

e A new deep learning model for classification problems called
“ConvXGB” based on combine between CNN and XGBoost.

e The ConvXGB architecture consists of a net with several stacked
convolutional layers and with XGBoost as the last layer of the
model. It differs from the traditional CNN, because there is
neither a pooling layer nor a Fully Connected (FC) layer: this
introduces simplicity and reduces the number of calculation
parameters, since it is not necessary to bring weights from the
FC layers back to re-adjust weights in the previous layers.

e We measured the performance of ConvXGB with both image
processing and general classification problems to show its
general applicability.

e ConvXGB uses auto feature learning effectively and predicts
class labels, with higher accuracy than the two individual
models, which are the current prototypes for modeling, and
other extant models, e.g. Decision Tree Classification (DTC [31]),
Multilayer Perceptron (MLP [32]) and Support Vector Classifi-
cation (SVC [33]).

The remainder of this paper is organized as follows: in Section 2,
we briefly review CNN and the XGBoost model. In Section 3, we
describe our ConvXGBmodel in detail. The experiments and results
are presented in Section 4. Finally, we discuss the result and
conclude.

2. Related work

2.1. Convolutional Neural Network (CNN)

In this section, we overview the CNN formulation and explain
themathematical theory behind it [29,34e36]. We assume an input
W � H, grey scale image, I 2RW�H , represented as:

I ¼fxðm;nÞj1�m�W;1�n�Hg; (1)

when xðm;nÞ is the intensity of the pixel at ðm;nÞ and given the
wk � hk filters (or kernels), K , the convolution produces a feature
map, Y , from the image, I , by applying the filter, K . The filter K
is slid through the image, I by a stride, Sk, and zero padding value.
We can define the discrete convolution as:
ðI 5K Þm;n ¼
Xwk

u¼�wk

Xhk

v¼�hk

Ku;vImþu;jþv; (2)

In each convolutional layer, indexed by l, a convolution opera-
tion and an additive bias will be applied to the input, for a feature

map indexed by f2f1;…; f ðlÞg. So the output, Y ðlÞ
i , of the lth layer

for the ith feature map, is derived from the output of the previous

layer, Y ðl�1Þ
i , by:

Y ðlÞ
i ¼f

0@BðlÞi þ
Xf ðl�1Þ

j¼1

KðlÞ
i;j *Y

ðl�1Þ
j

1A; (3)

where f is Rectified Linear Unit (ReLU) activation function,B ðlÞ
i is a

bias matrix, K ðlÞ
i;j is the filter of size 2wk þ 1� 2hk þ 1.

Thus, the elements of the output of layer, l, for feature map, i,

Y ðlÞ
i , at position ðm;nÞ is:

�
Y ðlÞ

i

�
m;n

¼f

0@�
B ðlÞ

i

�
m;n

þ
X
j¼1

f l�1ð Þ�
KðlÞ
i;j 5Y ðl�1Þ

j

�
m;n

1A
¼ f

0B@�
BðlÞi

�
m;n

þ
X
j¼1

f l�1ð Þ X
u¼�wðlÞ

k

w lð Þ
k X

v¼�hðlÞ
k

h lð Þ
k �

K ðlÞ
i;j

�
m;n

�
Y ðl�1Þ

j

�
mþu;nþv

1CA
(4)

A pooling layer further modifies the layer output: it down-
samples and avoids overfitting of the output. It replaces the output
with the maximum or average value within a rectangular neigh-

borhood. For example, if ðY ðlÞ
i Þm;n is an output of the previous layer,

with f activation function, then Pð ,Þ is a pooling function which

acts on Y ðlÞ
i by passing it through a pooling process with stride, Sp,

and wp � hp pooling window. In general, pooling operates by
placing windows at non-overlapping positions in each feature map
and keeping one value per window so that the feature maps are
subsampled. Two types of pooling are commonly used: average
pooling and max pooling: max pooling, in which the maximum
value of eachwindow is taken, is usually applied. Thus the output of
a max-pooling function becomes:

P
�
Y ðlÞ

i

�
m;n

¼max
�
Y ðlÞ

i

�
m;n

; (5)

where the max function is applied to the max-pooling window of
dimension:

dP
�
Y ðlÞ

i

�
m;n

¼ �ðW �wkÞ
�
Sp þ1

�� �ðH�hkÞ
�
Sp þ1

�
; (6)

A Fully Connected (FC) layer is the last layer of the CNN archi-
tecture: the output from the previous pooling layer will be
stretched to a single column vector and become the input of this
layer. In the FC layer, all neurons in the previous layer are connected
to every neuron in the following another. Generally, in FC layers, we
can apply the well-known equations for multilayer perceptrons. Let

L be a number of FC layers, f ðlÞ1 is the number feature maps of size

f ðlÞ2 � f ðlÞ3 (following the notation used by Stutz [35]) and the ith

feature map in layer l, is computed
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�
Y ðlÞ

i

�
m;n

¼f

0@Xf ðl�1Þ
1

p¼1

Xf ðl�1Þ
2

q¼1

Xf ðl�1Þ
3

r¼1

wðlÞ
i;p;q;r

�
Y ðl�1Þ

j

�
q;r

1A: (7)

where wðlÞ
i;p;q;r is the weight connecting the unit at ðm;nÞ in feature

map, i, in layer, l, to the one at the position ðq; rÞ in feature map, p, in
layer ðl � 1Þ. In practice, softmax is the transformation function for
multi-class prediction, and dropout regularization is used to de-
creases number of neurons in the FC layer to avoid overfitting.
2.2. Extreme Gradient Boosting (XGBoost)

The Extreme Gradient Boosting (XGBoost) of Chen and Guestrin
is a highly scalable end-to-end tree boosting system - a machine
learning technique for classification and regression problems [30].
XGBoost uses an ensemble of K classification and regression trees

(CARTs), each of which has Ki
E

���i21::K nodes. The final prediction is

the sum of the prediction scores for each tree:

byi ¼4ðxiÞ¼
XK
k¼1

fkðxiÞ; fk2F; (8)

where the xi are members of the training set and yi are the corre-
sponding class labels, fk is the leaf score for the kth tree and F is the
set of all K scores for all CARTs. Regularization is applied to improve
the final result:

L ð4Þ¼
X
i

lðbyi; yiÞ þX
k

UðfkÞ (9)

The first term, l, represents the differentiable loss function,
which measures the difference between target yi and the predic-
tion byi . The second term avoids over-fitting: U penalizes the
complexity of the model:

Uðf Þ¼gT þ 1
2
l
XT
j¼1

w2
j (10)

where g; l are constants controlling the regularization degree, T is
the number of leaves in the tree and w is the weight of each leaf.
Gradient boosting (GB) is effective in regression and classification
problems. GB was used with the loss function, extended by a sec-
ond order Taylor expansion, with the constant term removed to
produce a simplified objective at step t, as follows:

~L
ðtÞ

x
X
i¼1

n �
gifiðxiÞþ

1
2
hif

2
i ðxiÞ

	
þUðftÞ

¼
X
i¼1

n �
gifiðxiÞþ

1
2
hif

2
i ðxiÞ

	
þgT þ1

2
l
X
j¼1

T

w2
j

¼
X
j¼1

T
240@X

i2Ij

gi

1Awj þ
1
2

0@X
i2Ij

hi þ l

1Aw2
j

35þgT (11)

where Ij ¼ fijqðxiÞ¼ jg denote the instance set of leaf t, and

gi ¼
vl
�byðt�1Þ

i ; yi
�

vbyðt�1Þ
i

(12)
hi ¼
v2l

�byðt�1Þ
i ; yi

�
v
�byðt�1Þ

i

�2 (13)

Are first and second order gradient statistics of the loss function.
The optimal weight w*

j of leaf j and the quality of a tree structure q,

for a given tree structure qðxiÞ can be computed:

w*
j ¼ �

P
i2Ij giP

i2Ijhi þ l
; (14)

~L
ðtÞðqÞ¼ �1

2

X
j¼1

T
�P

i2Ij gi
�2P

i2Ij hi þ l
þ gT : (15)

In practice, the evaluating for split candidates by utilized the
score in the instance sets of left IL and right IR nodes after the split,
where I ¼ IR∪IL, then the loss reduction after the split is:

L split ¼
1
2

"�P
i2IL gi

�2P
i2ILhi þ l

þ
�P

i2IRgi
�2P

i2IRhi þ l
þ

�P
i2Igi

�2P
i2Ihi þ l

#
� g (16)

3. ConvXGB

In this section, the ConvXGB model is described in detail. The
architecture has two main parts: each part is composed of several
different layers-see Fig. 1. In Section 3.2, we describe the training
algorithm. The data sets used are listed in Table 1.

3.1. ConvXGB architecture

The architecture of ConvXGB is shown in Fig. 1. The model has
six layers: 1) input layer, 2) data preprocessing layer, 3) convolu-
tional layers, 4) reshape layer, 5) class prediction layer and 6)
output layer. Each layer has different capabilities and re-
sponsibilities: these layers are the keys to the success of the model.
Each layer can be divided into two parts: one for feature learning
and the other to predict the class labels. The types of layers are
described next.

3.1.1. Feature learning part
This part learns the key features from the training data set. This

part has three layers: the input, data preprocessing convolutional
layers. Prediction accuracy depends on effective feature learning.
Details of each layer follow.

Input layer: The input layer is the first layer and is responsible for
the input of the model. We assume a training data set, X, consists of
a set of tuples, ðxj; yjÞ, where j is the index of the data set. xj is affiffiffiffi
N

p
�

ffiffiffiffi
N

p
feature matrix and yj is the class label assigned to vector,

xj. If the training set is in this required format, it will be passed to
directly to the convolutional layers of the feature learning section,
otherwise, it will be formatted in the data preprocessing layer -
described next.

Data preprocessing layer: Tomake our system flexible and able to
handle data coming from many sources, we decided to use a
common square matrix format for the tensors in the convolution
sections. In this layer, if the input data is not our standard square
form, with dimensions,

ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
, we convert it, by padding as

necessary, to the common form. Different data types are also con-
verted in this layer.



Fig. 1. Architecture of the ConvXGB model.

Table 1
Data sets used: taken from UCI Repository [37].

Data sets Area Instances Features Features
after reshape

Classes Output
depth

Anuran Calls (MFCCs) [38] Life 7195 22 800 60 32
Breast Cancer Wisconsin Life 699 10 512 2 32
(Original) [39]
DrivFace [40] Computer 606 6400 51,200 10 8
Parkinsons [41] Life 197 23 800 2 32
QSAR Biodegradation [42] N/A 1055 41 784 2 16
Sensorless Drive Computer 58,509 49 1568 11 32
Diagnosis [38]
Waveform Database Physical 5000 40 800 3 32
Generator (ver. 1) [38]
Waveform Database Physical 5000 40 12,544 3 256
Generator (ver. 2) [38]

Fig. 2. The process of operation in part of predict the class labels consists of reshape layer, class prediction layer and output layer.
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The required format is further described in Section 3.3.
Convolutional layer: The convolutional layers are the core layers

in this part; they are responsible for feature learning and apply a
convolution and an additive bias to the input data. The data is
logically a tensor, with dimensions, ð

ffiffiffiffi
N

p
;

ffiffiffiffi
N

p
;zðlÞÞ, see left of Fig. 2,

where zðlÞ is the number of filters (or output depth) in the l layer. For
example, with 9 feature vectors and 64 output convolution chan-
nels, N ¼ 9 and x ¼ ½x1; x2;…; x9� is a set of feature vectors in R9 or

R
ffiffiffi
9

p
�

ffiffiffi
9

p
and d ¼ 64 and the output of each convolutional layer is a

tensor with 3� 3� 64 elements.
We can set the number of convolutional layers as required.

However, we must be careful when increasing the number of the
convolutional layers, because, as the number of layer increases, the
computation time will increase. Adding too many layers may
outweigh any advantage and we must balance carefully any in-
crease in accuracy with the cost incurred, including the availability
of a machine with sufficient power to support the necessary
computation. From Equation (3) in Section 2.1:

YðlÞ
i ¼f

0@BðlÞi þ
Xf ðl�1Þ

j¼1

KðlÞ
i;j *Y

ðl�1Þ
j

1A
The computational complexity is set out in Section 3.2.
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3.1.2. Predicting the class labels
This part predicts the class labels from training data through

feature learning in the convolutional layers of the previous part.
Before input to the prediction part, the input must be in the form of
a vector, so a housekeeping operation transforms the tensor to a
vector in the reshape layer - see middle of Fig. 2.

Reshape layer: This layer just runs some housekeeping opera-
tions to convert the (logical) tensors output from the convolutional
layers to the vector required by the next layer.

Class prediction layer: The main task in this layer is to predict the
class using XGBoost as the driving force. XGBoost uses a tree
structure and we can set the number of trees, thus the size of the
structure affects performance. The quality of a tree structure can be
scored as:

~L
ðtÞðqÞ¼ �1

2

XT
j¼1

�P
i2Ij gi

�2P
i2Ij hi þ l

þ gT (17)

where Ij ¼ fijqðxiÞ¼ jg denotes the instance set of leaf t and gi ¼
vlðbyðt�1Þ

i ;yiÞ
vbyðt�1Þ

i

, hi ¼ v2lðbyðt�1Þ
i ;yiÞ

vbyðt�1Þ
i

are first and second order gradient statis-

tics of the loss function, g and l are constants to control the regu-
larization degree, and T is the number of leaves in the tree. One of
the key tasks for this layer is splitting into the best set of segments:
we use the gain of the split in Equation (16). In each segment, sort
the data according to feature values and visit the data will be
implemented as a first step in sorted order to accumulate the
gradient statistics.

Let IR; IL are the left and right instance sets and I ¼ IR∪ IL is their
union, then the loss after the split is:

L split ¼
1
2

"�P
i2IL gi

�2P
i2ILhi þ l

þ
�P

i2IR gi
�2P

i2IRhi þ l
þ

�P
i2Igi

�2P
i2Ihi þ l

#
� g

In practice, this formula is used for evaluating candidate splits
by using the scores of the instance sets of the left and right child
nodes after the split. In addition, the model will speed up the
training process and reduce the number of samples that are used by
ignoring sparse inputs - 0 features or missing values).

Output layer: Output layer will get class predictable by class
prediction layer. Finally, these classes are evaluated for accuracy,
which represents the learning performance of the model.
3.2. ConvXGB learning algorithm

Let X ¼ fðxj;yjÞ
���1� j� Mg, where M is the size of training data

set, xj ¼ ½x1; x2;…; xN� be a set of N feature vectors in RN or R
ffiffiffi
N

p
�

ffiffiffi
N

p

and yj is the label of vector xj. The learning algorithm for the
ConvXGB can be summarized as follows:

1. Initialize the training data set, X ¼ fðxj;yjÞ
���1� j� Mg.

2. If necessary, pad the N elements of each training data item, xj, so
that new data item can be formed into a square matrix of di-
mensions,

ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
.

3. Convert xj tensor format, ð ffiffiffiffi
N

p
;

ffiffiffiffi
N

p
;zðlÞ).

4. Set the parameters of the convolutions for learning features
(a) number of convolutional layers, L
(b) convolutional layer output depth, z
(c) for each layer, set the filter sizes, KðlÞ, and

(d) filter strides, SðlÞk
5. For each layer, l, in 1…L: Calculate the convolutions (left side of
Fig. 2) to generate the Y iðlÞ for layer, l:

Y ðlÞ
i ¼f

0@BðlÞi þ
Xf ðl�1Þ

j¼1

KðlÞ
i;j *Y

ðl�1Þ
j

1A;
6. Reshape Y ðlÞ
i to a vector of length (

ffiffiffiffi
N

p � ffiffiffiffi
N

p � zðlÞ) - Y Y ðlÞ

7. Initialize a new training data set for class prediction layer

Xnew ¼
n�

Y Y j; yj
����1� j�M

o
:

8. Initialize parameters for the prediction step, set
(a) total number of trees, KK
(b) regularization parameters, g and l,
(c) column subsampling parameter,
(d) maximum tree depth and
(e) learning rate

9. Determine the class labels for output:

byi ¼4ðYYiÞ¼
XKK

k¼1

fkðxiÞ; fk2F;

where F ¼ f ðYYiÞ ¼ wqðYYÞðq : RN /T ;w2RT Þ.

10. Calculate the optimal leaf weight for the best tree structure

w*
j ¼ �

P
i2Ij giP

i2Ijhi þ l
;

11. Calculate the quality of the tree structure, q, using the scoring
function

~L
ðtÞðqÞ¼ �1

2

�P
i2Ij gi

�2P
i2Ijhi þ l

þ gT :

where T is the number of leaves in the tree.

12. Calculate the best splitting points

L split ¼
1
2

"�P
i2IL gi

�2P
i2ILhi þ l

þ
�P

i2IRgi
�2P

i2IRhi þ l
þ

�P
i2Igi

�2P
i2Ihi þ l

#
� g
13. Terminate

Our ConvXGB algorithm has time complexity:
O Ld2mnpqþ O rðKtþlogBÞwhich reduces to O Ld2mnpq;where L is
the number of layers, d is the number of input or output channels,
the data matrix has size m� n, the filter has size p� q, r ¼k x k is
the number of non-missing entries, K is the number of trees, t is the
tree depth and B is the block length.
3.3. Data preprocessing

As noted before, this section is an important housekeeping stage
to allow our system to handle data from multiple sources in mul-
tiple formats. Basically, we pad out the data to generate square
tensors by adding zeroes as necessary. For example, If the training



Fig. 4. ConvXGB vs all models for the Anuran Calls (MFCCs) data set [38].
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data set, X ¼ fðxj; yjÞ
���1� j� Mg has M training data items, xj ¼ ½x1;

x2;…; xN � be a set of N feature vectors in RN , since N’ ¼
ffiffiffiffi
N

p
is in-

tegral, we convert to input data to be a square matrix with
dimension N’. For example, the vector ½0;1;2;3;4;5;6;7;8� is a set
of data vectors in R9, this vector matches the standard criterion, so

is just copied a 3� 3 matrix as follows

240 1 2
3 4 5
6 7 8

35 and shown in

Fig. 3(a) However, if
ffiffiffiffi
N

p
is not integral, we pad the feature vector

with zeroes and copy the padded vector to a square matrix. For
example, as shown in Fig. 3(b), we have a vector
½0;1;2;3;4;5;6;7;8;9;10� in R11, so five zeroes, ½0;0;0;0;0�, are

added will leading to a 4� 4 matrix (see Fig. 4)

2664
0 1 2 3
4 5 6 7
8 9 10 0
0 0 0 0

3775.
Fig. 5. ConvXGB vs all models for the Breast Cancer Wisconsin (Original) data set [39].
*SVC3 is not supported for Breast Cancer Wisconsin (Original) data set.
4. Experimental methods and results

The data sets used to evaluate the model performance for
classification problems were collected from the University of Cali-
fornia at Irvine (UCI) Repository of machine learning data sets [37].
The data sets were chosen from several areas, including data sets
with few to very large numbers of instances and also sets where the
number of attributes was much greater than the number of in-
stances - see Table 1.

In this experiment, we used threefold cross validation to train
and test the models. Each data set was divided into three disjoint
subsets. Then, two subsets were used as a training set and the other
subset was used as a testing set. This process was repeated three
times: each subset was used exactly once as the testing set. The
results from each testing set were averaged and a standard devia-
tion calculated (see Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, and
Fig. 11).

We set the experimental parameters carefully to balance the
resources used while achieving good performance, guided by the
time complexity of our model - see Section 3.2. Initially, we set the
number of the convolutional layers or number of maps, L ¼ 2, and
the output depth of the convolutional layer, z ¼ 2n, where n ¼ 1;2;
…;10. The chosen z value sets a balance between performance and
use of resources: for example, if we choose the number of maps, z,
as too small, then there will be insufficient to represent all the
features in the data, but, if we choose it too large, then the data will
be overfitted and the computation will need more memory than
the computer has available. The actual values chosen are shown in
Fig. 3. Example of converting data to the standard criterion: (a) Describes of a ‘square’ fea
feature vector is square.
Table 2. We set the filter size, K ¼ 2� 2 and the stride of the filter
Sk ¼ 1 to enable small features to be recognized.

The results of our ConvXGB model were compared with other
models shown in Tables 5(a) - 5(c) including Convolutional Neural
Network (CNN) [29], eXtreme Gradient Boosting (XGBoost) [30],
Decision Tree Classifier (DTC) [31], Multilayer Perceptron (MLP)
[32] and the Support Vector Classification (SVC) [33]. We tried to
configure the parameters in all cases to generate a fair comparison.
ture vector which can be simply copied whereas, in (b), zeroes are added so that the



Fig. 6. ConvXGB vs all models for the DrivFace data set [40].

Fig. 7. ConvXGB vs all models for the Parkinsons data set [41].

Fig. 8. ConvXGB vs all models for the QSAR Biodegradation data set [42].

Fig. 9. ConvXGB vs all models for the Sensorless Drive Diagnosis data set [38].

Fig. 10. ConvXGB vs all models for the Waveform Database Generator (Ver. 1) data set
[38].

Fig. 11. ConvXGB vs all models for the Waveform Database Generator (Ver. 2) data set
[38].
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In the CNN model, the parameters in the convolutional layers
were set according to our model with the difference that CNN had
an added pooling layer of size 2� 2 pool and stride 2, numbers of
neurons in the FC layer was 2n, when n ¼ 6;7;…;10. The XGBoost
model was set similarly, with parameters set matching our model
to fairly evaluate performance. Using these parameters, the accu-
racy of the two models was compared based on the same under-
lying resources. In the DTC model, the maximum depth of the tree
was expanded until all leaves are pure or until all leaves contain less
than minss ¼ 2, where minss (minimum samples split) is the
minimum number of samples required to split an internal node.
The Gini impurity was used as a criterion for the function to mea-
sure the quality of a split.

For the MLPmodel, the numbers of neurons is 2n, when n ¼ 6;7;
…;10, the learning rate was set to 0.001 and we used four variants,
using different activation functions: linear (MLP1), sigmoid (MLP2),
tanh (MLP3), and ReLU (MLP4).



Table 2
Parameters in each layer of the ConvXGB model.

Layer Type Input Kernel(K) stride (Sk) Output

1 Input
ffiffiffiffi
N

p � ffiffiffiffi
N

p
na na

ffiffiffiffi
N

p � ffiffiffiffi
N

p

2 Data Preprocessing
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
na na

ffiffiffiffi
N

p
;

ffiffiffiffi
N

p
;1

3 Convolutional
ffiffiffiffi
N

p
;

ffiffiffiffi
N

p
;1 2� 2 1

ffiffiffiffi
N

p
;

ffiffiffiffi
N

p
;zðl�1Þ

4 Convolutional
ffiffiffiffi
N

p
;

ffiffiffiffi
N

p
;zðl�1Þ 2� 2 1

ffiffiffiffi
N

p
;

ffiffiffiffi
N

p
;zðlÞ

5 Reshape
ffiffiffiffi
N

p
;

ffiffiffiffi
N

p
;zðlÞ na na

ffiffiffiffi
N

p � ffiffiffiffi
N

p � zðlÞ

6 Class Prediction
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
� zðlÞ na na No. of Classes

7 Output na na na No. of Classes

na ¼ not applicable.

Table 3
The properties of the models used in the performance comparison.

Models Parameters details Ref. Time Complexity

CNN No. of Convolutional layer l ¼ 2, Pooling ¼ Yes [29] O Ld2mnpqþ O MNhce
XGBoost Max_depth ¼ 3, Objective ¼ Binary: Logistic [30] O rðKt þ logBÞ
DTC Criterion ¼ Gini, minss ¼ 2 [31] O tMlogN
MLP1 Activation ¼ Linear, Learning rate ¼ 0.001 [32] O MNhce
MLP2 Activation ¼ Sigmoid, Learning rate ¼ 0.001 [32] O MNhce
MLP3 Activation ¼ tanh, Learning rate ¼ 0.001 [32] O MNhce
MLP4 Activation ¼ ReLU, Learning rate ¼ 0.001 [32] O MNhce
SVC1 Kernel ¼ RBF, C ¼ 1.0 [33] O M3

SVC2 Kernel ¼ Linear, C ¼ 1.0 [33] O M3

SVC3 Kernel ¼ Poly, C ¼ 1.0 [33] O M3

SVC4 Kernel ¼ Sigmoid, C ¼ 1.0 [33] O M3
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The SVC model similarly was divided into four variants with
differing kernel functions: RBF (SVC1), linear (SVC2), polynomial
(SVC3) and sigmoid (SVC4). In each variant, the penalty parameter
of the error term was set to C ¼ 1:0. Consequently, a total of 11
models were used: the properties are summarized in Table 3.

Furthermore, Table 3 shows the time complexity of the models.
We assume that: L is the number of layers, d is the various of input
or output channels, the datamatrix has sizem� n, the filter has size
p� q, r ¼k x k is the number of non-missing entries, K is the
number of trees, t is the tree depth and B is the block length, M is
the number of training sets, N is the number of features or di-
mensions, h is number of hidden neurons, c is the number of classes
and e is the number of epochs.

We implemented and tested our and other models with Python
(3.6.4) and functions from the TensorFlow library [43], the con-
volutional operation (also used in CNN), together with the XGBoost
python package for the prediction step. For other models testing,
we used the machine learning library from scikit-learn [44]. Our
experiments used Linux (Ubuntu 18.04.1LTS) on a system specifi-
cations e Processor: Intel® Core™ i5-4570 CPU @ 3.20 GHz,
Memory: 4.0 GiB, OS: Ubuntu 18.04.1LTS. Training times (for deep
learning model) for our model, ConvXGB and CNN, and other
models XGBoost, DTC, MLP, and SVC, show the run time of each
model. ConvXGB is slower than XGBoost, DTC, MLP, and SVC.
Table 4
Run time of our model compared with other models.

Data set Run Time (sec.)

ConvXGB CNN

Anuran Calls (MFCCs) 43 s 1.6� 106 s
Breast Cancer Wisconsin (Original) 2.7 s 5.2� 103 s
DrivFace 2.2� 102 s 2.4� 104 s
Parkinsons 1.2 s 1.5� 103 s
QSAR Biodegradation 6.2 s 7.9 � 103s
Sensorless Drive Diagnosis 6.7� 102 s 2.4� 106 s
Waveform Database Generator (ver. 1) 57 s 5.6� 104 s
Waveform Database Generator (ver. 2) 4.5� 102 s 6.1� 104 s
However, when compared to the deep learning model, CNN.
ConvXGB is faster than CNN: it uses a one pass training - see Table 4.
5. Conclusions

We developed a new deep learning model for classification
problems. ConvXGB, This model has two parts: one for feature
learning and one to predict the class labels. We assessed ConvXGB,
not only on image data, but also on some general data sets, which
used our data preprocessing module. ConvXGB was simplified by
reducing the number of needed parameters and did not require
back propagation in the fully connected layer. The feature learning
was also automatic. In addition, the number of the convolution
layers can be increased, depending on the data.

ConvXGB was based on CNN and XGBoost, but our experimental
results show that it was always slightly better and generally
significantly better than these two models and also other models,
which are often used as modeling prototypes e:g: the traditional
DTC, MLP and SVC families. CNN also generally performed well and
approached our results for some data sets, e:g: the Breast Cancer
data set. XGBoost showed the next best result: in one instance, it
returned 100% for the Parkinsons data set, but its average was
slightly worse than our ConvXGB.
XGBoost DTC MLP SVC

5.4 s 13 s 17 s 23 s
8.1� 10�1 s 9.3� 10�1 s 9.8� 10�1 s 2.1� 10�2 s
7.4� 10�1 s 3.1 s 4.7 s 1.4� 10�2 s
4.5� 10�1 s 3.6� 10�1 s 6.3� 10�1 s 4.7� 10�1 s
2.1 s 2.3 s 3 s 2.7 s
3.8� 102 s 1.3� 102 s 3.3� 102 s 1.2� 104 s
8.8 s 9.7 s 16 s 13 s
14 s 11 s 21 s 18 s



Table 5a
Our model compared with CNN, XGBoost and DTC.

Data set Improvement (Impv.)

ConvXGB CNN XGBoost DTC

Acc. (%) Acc. (%) Impv. Acc. (%) Impv. Acc. (%) Impv.

Anuran Calls (MFCCs) 87.9±1.3 84.2±0.9 3:7% 83.6±1.3 4:3% 72.6±1.0 15:3%
Breast Cancer Wisconsin (Original) 97.4±0.7 96.1±0.9 1:3% 95.9±0.2 1:5% 94.7±0.9 2:7%
DrivFace 93.7±1.9 91.9±2.6 1:8% 91.4±0.6 2:3% 86.6±2.3 7:1%
Parkinsons 96.4±0.7 90.8±1.3 5:6% 94.9±3.6 1:5% 92.3±6.7 4:1%
QSAR Biodegradation 88.4±0.6 86.5±0.5 1:9% 87.6±0.6 0:8% 81.2±1.0 7:2%
Sensorless Drive Diagnosis 99.6±0.0 87.9±2.2 11:7% 99.0±0.1 0:6% 98.3±0.1 1:3%
Waveform Database Generator (ver. 1) 86.6±0.4 86.1±0.5 0:5% 84.8±0.9 1:8% 74.8±0.1 11:8%
Waveform Database Generator (ver. 2) 86.7±1.0 82.7±0.8 4:0% 85.0±0.4 1:7% 73.8±1.3 12:9%

Note: Improvement to ConvXGB show in Impv. column.

Table 5b
Our model compared with the MLP family.

Data set ConvXGB MLP1 MLP2 MLP3 MLP4 Improvement

Acc. (%) Acc. (%) Acc. (%) Acc. (%) Acc. (%)

Anuran Calls (MFCCs) 87.9±1.3 83.0±0.4 79.7±0.7 85.1±0.7 y85:7±0.5 2:2%
Breast Cancer Wisconsin (Original) 97.4±0.7 65.5±3.3 65.5±3.3 65.5±3.3 65.5±3.3 31:9%
DrivFace 93.7±1.9 90.1±0.7 90.1±0.7 90.1±0.7 90.1±0.7 3:6%
Parkinsons 96.4±0.7 79.0±1.9 83.6±3.8 y84:6±3.3 79.5±1.9 11:8%
QSAR Biodegradation 88.4±0.6 85.5±1.8 86.0±1.3 y86:6±1.2 86.3±1.7 1:8%
Sensorless Drive Diagnosis 99.6±0.0 87.9±0.8 y93:8±0.4 93.6±0.7 90.5±0.7 5:8%
Waveform Database Generator (Ver. 1) 86.6±0.4 85.8±0.6 y86:3±0.8 85.9±0.6 86.0±0.5 0:3%
Waveform Database Generator (Ver. 2) 86.7±1.0 86.1±0.3 y86:2±0.4 83.9±0.4 83.1±0.2 0:5%

Note: Improvement shown as improvement of ConvXGB vs the best of MLP family -marked with a y.

Table 5c
Our model compared with the SVC family.

Data set ConvXGB SVC1 SVC2 SVC3 SVC4 Improvement

Acc. (%) Acc. (%) Acc. (%) Acc. (%) Acc. (%)

Anuran Calls (MFCCs) 87.9±1.3 55.4±1.3 y79:7±0.7 6.2±0.1 43.4±1.1 8:2%
Breast Cancer Wisconsin (Original) 97.4±0.7 y66:1±3.2 65.1±3.4 e 65.5±3.3 31:3%
DrivFace 93.7±1.9 90.1±0.7 y91:8±1.9 90.1±0.7 90.1±0.7 1:9%
Parkinsons 96.4±0.7 78.5±3.8 84.6±2.5 y88:7±1.5 75.4±5.8 7:7%
QSAR Biodegradation 88.4±0.6 84.4±3.1 y87:0±0.9 84.8±1.9 66.3±1.5 1:4%
Sensorless Drive Diagnosis 99.6±0.0 24.9±0.3 y87:2±0.3 80.9±0.3 9.0±0.2 12:4%
Waveform Database Generator (Ver. 1) 86.6±0.4 86.1±0.6 y86:3±0.2 81.5±0.9 51.6±1.6 0:3%
Waveform Database Generator (Ver. 2) 86.7±1.0 y86:4±0.3 85.9±0.4 82.3±0.5 56.3±1.1 0:3%

Note: Improvement shown as improvement of ConvXGB vs the best of SVC family - marked with a y.
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