• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.045 seconds

The Integration of Mobile GIS and Spatio-temporal Database for Evaluating Space-time Accessibility of an Individual: An Approach Based on Time Geography Model

  • Lee Yang-Won;Shibasaki Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.753-758
    • /
    • 2005
  • This study attempts at building an integrated GIS computing framework for evaluating space-time accessibility of an individual with the approach of time geography model. The proposed method is based on the integration of mobile GIS and object-relational spatio-temporal database. Three components are central to our system: ( i ) mobile GIS application that transmits spatio-temporal trajectory data of an individual; ( ii ) spatio-temporal database server that incorporates the time geography model; and (iii) geovisualization client that provides time geographic queries to the spatio-temporal database. As for the mobile GIS application, spatio-temporal trajectory data collected by GPS-PDA client is automatically transmitted to the database server through mobile data management middleware. The spatio-temporal database server implemented by extending a generic DBMS provides spatio-temporal objects, functions and query languages. The geovisualization client illustrates 3D visual results of the queries about space-time path. space-time prism and space-time accessibility. This study shows a method of integrating mobile GIS and DBMS for time geography application, and presents an appropriate spatio-temporal data model for evaluating space-time accessibility of an individual.

  • PDF

A Study on Production Prediction Model using a Energy Big Data based on Machine Learning (에너지 빅데이터를 활용한 머신러닝 기반의 생산 예측 모형 연구)

  • Kang, Mi-Young;Kim, Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.453-456
    • /
    • 2022
  • The role of the power grid is to ensure stable power supply. It is necessary to take various measures to prepare for unstable situations without notice. After identifying the relationship between features through exploratory data analysis using weather data, a machine learning based energy production prediction model is modeled. In this study, the prediction reliability was increased by extracting the features that affect energy production prediction using principal component analysis and then applying it to the machine learning model. By using the proposed model to predict the production energy for a specific period and compare it with the actual production value at that time, the performance of the energy production prediction applying the principal component analysis was confirmed.

  • PDF

Use of automated artificial intelligence to predict the need for orthodontic extractions

  • Real, Alberto Del;Real, Octavio Del;Sardina, Sebastian;Oyonarte, Rodrigo
    • The korean journal of orthodontics
    • /
    • v.52 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Objective: To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records. Methods: The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions. Results: By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used. Conclusions: The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.

Development of Dam Inflow Simulation Method Based on Bayesian Autoregressive Exogenous Stochastic Volatility (ARXSV) model

  • Fabian, Pamela Sofia;Kim, Ho-Jun;Kim, Ki-Chul;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.437-437
    • /
    • 2022
  • The prediction of dam inflow rate is crucial for the management of the largest multi-purpose dam in South Korea, the Soyang Dam. The main issue associated with the management of water resources is the stochastic nature of the reservoir inflow leading to an increase in uncertainty associated with the inflow prediction. The Autoregressive (AR) model is commonly used to provide the simulation and forecast of hydrometeorological data. However, because its estimation is based solely on the time-series data, it has the disadvantage of being unable to account for external variables such as climate information. This study proposes the use of the Autoregressive Exogenous Stochastic Volatility (ARXSV) model within a Bayesian modeling framework for increased predictability of the monthly dam inflow by addressing the exogenous and stochastic factors. This study analyzes 45 years of hydrological input data of the Soyang Dam from the year 1974 to 2019. The result of this study will be beneficial to strengthen the potential use of data-driven models for accurate inflow predictions and better reservoir management.

  • PDF

Learning-based Inertial-wheel Odometry for a Mobile Robot (모바일 로봇을 위한 학습 기반 관성-바퀴 오도메트리)

  • Myeongsoo Kim;Keunwoo Jang;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • This paper proposes a method of estimating the pose of a mobile robot by using a learning model. When estimating the pose of a mobile robot, wheel encoder and inertial measurement unit (IMU) data are generally utilized. However, depending on the condition of the ground surface, slip occurs due to interaction between the wheel and the floor. In this case, it is hard to predict pose accurately by using only encoder and IMU. Thus, in order to reduce pose error even in such conditions, this paper introduces a pose estimation method based on a learning model using data of the wheel encoder and IMU. As the learning model, long short-term memory (LSTM) network is adopted. The inputs to LSTM are velocity and acceleration data from the wheel encoder and IMU. Outputs from network are corrected linear and angular velocity. Estimated pose is calculated through numerically integrating output velocities. Dataset used as ground truth of learning model is collected in various ground conditions. Experimental results demonstrate that proposed learning model has higher accuracy of pose estimation than extended Kalman filter (EKF) and other learning models using the same data under various ground conditions.

Novel adsorption model of filtration process in polycarbonate track-etched membrane: Comparative study

  • Adda, Asma;Hanini, Salah;Abbas, Mohamed;Sediri, Meriem
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.479-487
    • /
    • 2020
  • Current assumptions are used in the formulation of pseudo-first (PFO) and second-order (PSO) models to describe the kinetic data of filtration based on ideal operating conditions. This paper presents a new model developed with pseudo nth order and based on real assumption. A comparison was performed between PFO, PSO and the new model to highlight their performance and the optimisation of the pseudo-order equation, using MATLAB software. Adsorption characteristic of bovine serum albumin adsorption on the track-etched membrane are used as a medium based on protein filtration data were extracted from the literature for different concentrations to demonstrate the comparison between PFO/PSO and the new model. The pseudo first and second-order kinetic models were applied to test the experimental data and they did not provide reasonable values. The results show that the predicted values are consistent with experimental values giving a good correlation coefficient R2 = 0.997 and a minimum root mean squared error RMSE = 0.0171. Indeed, the experimental results follow the new model and the optimal pseudo equation order n = 1.115, the most suitable curves for the new model. As a result, we used different experimental adsorption data from the literature to examine and check the applicability and validity of the model.

A Research on the Decomposition Model and Transposition Model Using the Measured Pyranometer Irradiation Data (피라노미터 실측 일조량을 통한 직산 분리 모델과 경사면 일조량 변환 모델에 관한 연구)

  • Lee, Sang-Hyuk;Lee, Kyung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.1-20
    • /
    • 2018
  • It is a very important and fundamental process to know accurately the intensity of the solar energy coming into the installed module considering the tilted angle. Europe and the US commonly use a program called PVsyst to convert the global horizontal irradiation to global irradiation on tilted plane. There are two types of models that PVsyst uses to convert to irradiation on tilted plane. In this paper, Perez model, which is a decomposition model and Perez model, which is a transposition model used in PVsyst, are applied based on global horizontal irradiation and global irradiation on tilted plane measured in a specific area. The comparison of the decomposition model shows the effect of the transpostion model on global irradiation on tilted plane conversion by comparing the ratio of the horizontal diffuse irradiation amount of the Watanabe model which are highly trusted in Asia and the Perez model. The comparison of transposition model confirm the error between the measured data and the calculated value which is applied Perez model to global horizontal irradiation decomposed by Perez model and Watanabe model. Based on the two comparisons, This paper propose a method to confirm the reliability of transposition model and reduce the error when PVsyst is used in Korea.

Development of Prediction Models of Dressroom Surface Condensation - A nodal network model and a data-driven model - (드레스룸 표면 결로 발생 예측 모델 개발 - 노달 모델과 데이터 기반 모델 -)

  • Ju, Eun Ji;Lee, June Hae;Park, Cheol-Soo;Yeo, Myoung Souk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • The authors developed a nodal network model that simulates the flow of moist air and the thermal behavior of a target area. The nodal network model was enhanced using a parameter estimation technique based on the measured temperature, humidity, and schedule data. However, the nodal model is not good enough for predicting humidity of the target space, having 55.6% of CVRMSE. It is because re-evaporation effect could not be modeled due to uncertain factors in the field measurement. Hence, a data-driven model was introduced using an artificial neural network (ANN). It was found that the data-driven model is suitable for predicting the condensation compared to the nodal model satisfying ASHRAE Guideline with 3.36% of CVRMSE for temprature, relative humidity, and surface temperature on average. The model will be embedded in automated devices for real-time predictive control, to minimize the risk of surface condensation at dressroom in an apartment housing.

A Study on Approximation Model for Optimal Predicting Model of Industrial Accidents (산업재해의 최적 예측모형을 위한 근사모형에 관한 연구)

  • Leem, Young-Moon;Ryu, Chang-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2006
  • Recently data mining techniques have been used for analysis and classification of data related to industrial accidents. The main objective of this study is to compare algorithms for data analysis of industrial accidents and this paper provides an optimal predicting model of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network) with ROC chart, lift chart and response threshold. Also, this paper provides an approximation model for an optimal predicting model based on NN. The approximation model provided in this study can be utilized for easy interpretation of data analysis using NN. This study uses selected ten independent variables to group injured people according to a dependent variable in a way that reduces variation. In order to find an optimal predicting model among 5 algorithms, a retrospective analysis was performed in 67,278 subjects. The sample for this work chosen from data related to industrial accidents during three years ($2002\;{\sim}\;2004$) in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF