A Study on Production Prediction Model using a Energy Big Data based on Machine Learning

에너지 빅데이터를 활용한 머신러닝 기반의 생산 예측 모형 연구

  • Published : 2022.10.03

Abstract

The role of the power grid is to ensure stable power supply. It is necessary to take various measures to prepare for unstable situations without notice. After identifying the relationship between features through exploratory data analysis using weather data, a machine learning based energy production prediction model is modeled. In this study, the prediction reliability was increased by extracting the features that affect energy production prediction using principal component analysis and then applying it to the machine learning model. By using the proposed model to predict the production energy for a specific period and compare it with the actual production value at that time, the performance of the energy production prediction applying the principal component analysis was confirmed.

전력망의 역할은 안정적인 전력공급이 최우선이다. 예고 없는 불안정한 상황에 대한 여러 가지 대비에 대한 방안이 필요하다. 기상 데이터를 활용하여 탐구적 데이터 분석을 통한 피처 간의 관계를 파악하여 머신러닝 기반의 에너지 생산 예측 모형을 모델링한다. 본 연구에서는 주성분분석을 사용하여 에너지 생산 예측 시 영향을 미치는 피처를 추출하였으며 머신러닝 모델에 적용함으로써 예측 신뢰도를 높였다. 제안한 모형을 사용하여 특정 기간을 대상으로 생산 에너지를 예측하고 해당 시점의 실제 생산 값과 비교함으로써 주성분분석을 적용한 에너지 생산 예측에 대한 성능을 확인하였다.

Keywords

Acknowledgement

이 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2022RIS-002)