• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.051 seconds

Methods for Stabilizing QoS in Mobile Cloud Computing (모바일 클라우드 컴퓨팅을 위한 QoS 안정화 기법)

  • La, Hyun Jung;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.507-516
    • /
    • 2013
  • Mobile devices have limited computing power and resources. Since mobile devices are equipped with rich network connectivity, an approach to subscribe cloud services can effectively remedy the problem, which is called Mobile Cloud Computing (MCC). Most works on MCC depend on a method to offload functional components at runtime. However, these works only consider the limited verion of offloading to a pre-defined, designated node. Moveover, there is the limitation of managing services subscribed by applications. To provide a comprehensive and practical solution for MCC, in this paper, we propose a self-stabilizing process and its management-related methods. The proposed process is based on an autonomic computing paradigm and works with diverse quality remedy actions such as migration or replicating services. And, we devise a pratical offloading mechanism which is still in an initial stage of the study. The proposed offloading mechanism is based on our proposed MCC meta-model. By adopting the self-stabilization process for MCC, many of the technical issues are effectively resolved, and mobile cloud environments can maintain consistent levels of quality in autonomous manner.

Estimation of Road Capacity at Two-Lane Freeway Work Zones Considering the Rate of Heavy Vehicles (중차량 비에 따른 편도 2차로 고속도로 공사구간 도로 용량 추정)

  • Ko, Eunjeong;Kim, Hyungjoo;Park, Shin Hyoung;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.48-61
    • /
    • 2020
  • The objective of this study is to estimate traffic capacity based on the heavy-vehicle ratio in a two-lane freeway work zone where one lane is blocked by construction. For this, closed circuit television (CCTV) video data of the freeway work zone was collected, and the congestion at an upstream point was observed. The traffic volume at a downstream point was analyzed after a bottleneck was created by the blockage due to the upstream congestion. A distribution model was estimated using observed-time headway, and the road capacity was analyzed using a goodness-of-fit test. Through this process, the general capacity and an equation for capacity based on the heavy-vehicle ratio passing through the work zone were presented. Capacity was estimated to be 1,181~1,422 passenger cars per hour per lane (pcphpl) at Yeongdong, and 1,475~1,589pcphpl at Jungbu Naeryuk. As the ratio of heavy vehicles increased, capacity gradually decreased. These findings can contribute to the proper capacity estimation and efficient traffic operation and management for two-lane freeway work zones that block one lane due to a work zone.

Study on a Demand Volume Estimation Method using Population Weighted Centroids in Facility Location Problems (시설물 입지에 있어 인구 중심점 개념을 이용한 수요 규모 추정 방법 연구)

  • Joo, Sung-A;Kim, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.11-22
    • /
    • 2007
  • This paper is to discuss analytical techniques to estimate demand sizes and volumes that determine optimal locations for multiple facilities for a given services. While demand size estimation is a core part of location modeling to enhance solution quality and practical applicability, the estimation method has been used in limited and restrict parts such as a single population centroid in a given larger census boundary area or small theoretical application experiments(e.s. census track and enumeration district). Therefore, this paper strives to develop an analytical estimation method of demand size that converts area based demand data to point based population weighted centroids. This method is free to spatial boundary units and more robust to estimate accurate demand volumes regardless of geographic boundaries. To improve the estimation accuracy, this paper uses house weighted value to the population centroid calculation process. Then the population weighted centroids are converted to individual demand points on a grid formated surface area. In turn, the population weighted centroids, demand points and network distance measures are operated into location-allocation models to examine their roles to enhance solution quality and applicability of GIS location models. Finally, this paper demonstrates the robustness of the weighted estimation method with the application of location-allocation models.

  • PDF

Development of a Prototype for GIS-based Flood Risk Map Management System (GIS를 이용한 홍수위험지도 관리시스템 프로토타입 개발에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Chun-Joo;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.359-366
    • /
    • 2002
  • The damages from the natural disasters, especially from the floods, have been increasing. Therefore, it is imperative to establish a BMP to diminish the damages from the floods and to enhance the welfare of the nation. Developed countries have been generating and utilizing flood risk maps to raise the alertness of the residents, and thereby achieving efficient flood management. The major objectives of this research were to develop a prototype management system for flood risk map to forecast the boundaries oi the inundation and to plot them through the integration of geographic and hydrologic database. For more efficient system development, the user requirement analysis was made. The GIS database design was done based on the results from the research work of river information standardization. A GIS database for the study area was built by using topographic information to support the hydrologic modeling. The developed prototype include several modules; river information edition module, map plotting module, and hydrologic modeling support module. Each module enabled the user to edit graphic and attribute data, to analyze and to represent the modeling results visually. Subjects such as utilization of the system and suggestions for future development were discussed.

Development and assessment of framework for selecting multi-GCMs considering Asia monsoon characteristics (아시아 몬순특성을 고려한 다중 GCMs 선정방법 개발 및 평가)

  • Kim, Jeong-Bae;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.647-660
    • /
    • 2020
  • The objectives of this study are to develop a framework for selecting multi-GCMs considering Asia monsoon characteristics and assess it's applicability. 12 climate variables related to monsoon climates are selected for GCM selection. The framework for selecting multi-GCMs includes the evaluation matrix of GCM performance based on their capability to simulate historical climate features. The climatological patterns of 12 variables derived from individual GCM over the summer monsoon season during the past period (1976-2005) and they are compared against observations to evaluate GCM performance. For objective evaluation, a rigorous scoring rule is implemented by comparing the GCM performance based on the results of statistics between historical simulation derived from individual GCM and observations. Finally, appropriate 5 GCMs (NorESM1-M, bcc-csm1-m, CNRM-CM5, CMCC-CMS, and CanESM2) are selected in consideration of the ranking of GCM and precipitation performance of each GCM. The selected 5 GCMs are compared with the historical observations in terms of monsoon season and monthly mean to validate their applicability. The 5 GCMs well capture the observational climate characteristics of Asia for the 12 climate variables also they reduce the bias between the entire GCM simulations and the observational data. This study demonstrates that it is necessary to consider various climate variables for GCM selection and, the method introduced in this study can be used to select more reliable climate change scenarios for climate change assessment in the Asia region.

Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm (최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계)

  • Oh, Sung-Kwun;Ma, Chang-Min;Yoo, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 2011
  • In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.

WebPR : A Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns (WebPR :빈발 순회패턴 탐사에 기반한 동적 웹페이지 추천 알고리즘)

  • Yoon, Sun-Hee;Kim, Sam-Keun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.187-198
    • /
    • 2004
  • The World-Wide Web is the largest distributed Information space and has grown to encompass diverse information resources. However, although Web is growing exponentially, the individual's capacity to read and digest contents is essentially fixed. From the view point of Web users, they can be confused by explosion of Web information, by constantly changing Web environments, and by lack of understanding needs of Web users. In these Web environments, mining traversal patterns is an important problem in Web mining with a host of application domains including system design and Information services. Conventional traversal pattern mining systems use the inter-pages association in sessions with only a very restricted mechanism (based on vector or matrix) for generating frequent k-Pagesets. We develop a family of novel algorithms (termed WebPR - Web Page Recommend) for mining frequent traversal patterns and then pageset to recommend. Our algorithms provide Web users with new page views, which Include pagesets to recommend, so that users can effectively traverse its Web site. The main distinguishing factors are both a point consistently spanning schemes applying inter-pages association for mining frequent traversal patterns and a point proposing the most efficient tree model. Our experimentation with two real data sets, including Lady Asiana and KBS media server site, clearly validates that our method outperforms conventional methods.

Development of TLCSM Based Integrated Architecture for Applying FRACAS to Defense Systems (국방 무기체계 FRACAS 적용을 위한 TLCSM 기반 통합 아키텍처 구축)

  • Jo, Jeong-Ho;Song, Hyeon-Su;Kim, Bo-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.190-196
    • /
    • 2020
  • FRACAS(Failure Reporting, Analysis and Corrective Action System) has been applied in various industries to improve the reliability of the systems. FRACAS is effective in improving reliability by repeating failure analysis, proper corrective action, and result verification for identified failures. However, FRACAS has many limitations in terms of process, data collection and management to be integrated into the existing development environment. In the domestic defense industry, studies on the development of FRACAS system and process improvement have been conducted to solve the difficulties of applying FRACAS, but most of them are concentrated in the operation/maintenance phase. Since FRACAS should be conducted in consideration of TLCSM(Total Life Cycle System Management), it is necessary to study the reference architecture so that FRACAS can be applied from the early design phase. In this paper, we studied the TLCSM-based integrated architecture considering the system life cycle phases, FRACAS closed-loop process, and FRACAS essentials in order to effectively apply FRACAS throughout the life cycle of defense systems. The proposed architecture was used as a reference model for FRACAS in a shipboard combat system.

An Improved RANSAC Algorithm Based on Correspondence Point Information for Calculating Correct Conversion of Image Stitching (이미지 Stitching의 정확한 변환관계 계산을 위한 대응점 관계정보 기반의 개선된 RANSAC 알고리즘)

  • Lee, Hyunchul;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • Recently, the use of image stitching technology has been increasing as the number of contents based on virtual reality increases. Image Stitching is a method for matching multiple images to produce a high resolution image and a wide field of view image. The image stitching is used in various fields beyond the limitation of images generated from one camera. Image Stitching detects feature points and corresponding points to match multiple images, and calculates the homography among images using the RANSAC algorithm. Generally, corresponding points are needed for calculating conversion relation. However, the corresponding points include various types of noise that can be caused by false assumptions or errors about the conversion relationship. This noise is an obstacle to accurately predict the conversion relation. Therefore, RANSAC algorithm is used to construct an accurate conversion relationship from the outliers that interfere with the prediction of the model parameters because matching methods can usually occur incorrect correspondence points. In this paper, we propose an algorithm that extracts more accurate inliers and computes accurate transformation relations by using correspondence point relation information used in RANSAC algorithm. The correspondence point relation information uses distance ratio between corresponding points used in image matching. This paper aims to reduce the processing time while maintaining the same performance as RANSAC.

A Study of Intelligent Recommendation System based on Naive Bayes Text Classification and Collaborative Filtering (나이브베이즈 분류모델과 협업필터링 기반 지능형 학술논문 추천시스템 연구)

  • Lee, Sang-Gi;Lee, Byeong-Seop;Bak, Byeong-Yong;Hwang, Hye-Kyong
    • Journal of Information Management
    • /
    • v.41 no.4
    • /
    • pp.227-249
    • /
    • 2010
  • Scholarly information has increased tremendously according to the development of IT, especially the Internet. However, simultaneously, people have to spend more time and exert more effort because of information overload. There have been many research efforts in the field of expert systems, data mining, and information retrieval, concerning a system that recommends user-expected information items through presumption. Recently, the hybrid system combining a content-based recommendation system and collaborative filtering or combining recommendation systems in other domains has been developed. In this paper we resolved the problem of the current recommendation system and suggested a new system combining collaborative filtering and Naive Bayes Classification. In this way, we resolved the over-specialization problem through collaborative filtering and lack of assessment information or recommendation of new contents through Naive Bayes Classification. For verification, we applied the new model in NDSL's paper service of KISTI, especially papers from journals about Sitology and Electronics, and witnessed high satisfaction from 4 experimental participants.