본 논문은 데이터 스트림의 하이브리드 질의를 위한 빠른 저장 방법을 제안한다. 빠르고 많은 입력을 가지는 데이터 스트림의 처리를 위해 DSMS(Data Stream Management System)란 새로운 시스템에 대한 연구가 활발히 진행되고 있다. 현재 입력되고 있는 데이터 스트림과 과거에 발생했던 데이터 스트림를 동시에 검색하는 하이브리드 질의를 위해서는 데이터 스트림이 디스크에 저장되어져야 한다. 그러나 데이터 스트림의 빠른 입력 속도와 메모리와 디스크 공간의 한계 때문에 저장된 데이터 스트림에 대한 질의보다는, 현재 입력되고 있는 데이터 스트림에 대한 질의에 대한 연구들이 주로 이루어졌다. 본 논문에서는 데이터 스트림의 입력을 받을 때 순환버퍼를 이용하여 메모리 이용률을 최대화하고 블록킹 없는 데이터 스트림의 입력을 가능하게 한다. 또한 최대한 많은 양의 데이터를 디스크에 저장하기 위하여 디스크에 있는 데이터를 압축한다. 실험을 통하여 제안되는 기술이 대량으로 입력되는 데이터 스트림을 빠르게 저장시킬 수 있다는 것을 보인다.
Musa, Ibrahim Musa Ishag;Lee, Dong-Gyu;Ryu, Keun-Ho
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.406-409
/
2008
Clustering data streams has an importance over many applications like sensor networks. Existing hierarchical methods follow a semi fuzzy clustering that yields duplicate clusters. In order to solve the problems, we propose an extended online divisive agglomerative clustering on data streams. It builds a tree-like top-down hierarchy of clusters that evolves with data streams using geometric time frame for snapshots. It is an enhancement of the Online Divisive Agglomerative Clustering (ODAC) with a pruning strategy to avoid duplicate clusters. Our main features are providing update time and memory space which is independent of the number of examples on data streams. It can be utilized for clustering sensor data and network monitoring as well as web click streams.
Journal of information and communication convergence engineering
/
제7권2호
/
pp.199-202
/
2009
Adaptive memory management is a serious issue in data stream management. Data stream differ from the traditional stored relational model in several aspect such as the stream arrives online, high volume in size, skewed data distributions. Data skew is a common property of massive data streams. We propose the predicted allocation strategy, which uses predictive processing to cope with time varying data skew. This processing includes memory usage estimation and indexing with timestamp. Our experimental study shows that the predictive strategy reduces both required memory space and latency time for skewed data over varying time.
일반적인 순차패턴 마이닝에서는 분석 대상 데이터 집합에 포함되는 구성요소의 발생 순서만을 고려하며, 따라서 단순 순차패턴은 쉽게 찾을 수 있는 반면 실제 응용 분야에서 널리 활용될 수 있는 관심도가 큰 순차패턴을 탐색하는데 한계가 있다. 이러한 단점을 보완하기 위한 대표적인 연구 주제들 중의 하나가 가중치 순차패턴 탐색이다. 가중치 순차패턴 탐색에서는 관심도가 큰 순차패턴을 얻기 위해서 구성요소의 단순 발생 순서 뿐만 아니라 구성요소의 가중치를 추가로 고려한다. 본 논문에서는 발생 간격에 기반 한 순차패턴 가중치 부여 기법 및 이를 활용한 순차 데이터 스트림에 대한 가중치 순차패턴 탐색 방법을 제안한다. 발생 간격 기반 가중치는 사전에 정의된 별도의 가중치 정보를 필요로 하지 않으며 순차정보를 구성하는 구성요소들의 발생 간격으로부터 구해진다. 즉, 순차패턴의 가중치를 구하는데 있어서 구성요소의 발생순서와 더불어 이들의 발생 간격을 고려하며, 따라서 보다 관심도가 크고 유용한 순차패턴을 얻는데 도움이 된다. 한편, 근래 대부분의 컴퓨터 응용 분야에서는 한정적인 데이터 집합 형태가 아닌 데이터 스트림 형태로 정보를 발생시키고 있다. 이와 같은 데이터 생성 환경의 변화를 고려하여 본 논문에서는 순차 데이터 스트림을 마이닝 대상으로 고려하였다.
River-water quality has been greatly improved during past several decades with the extraordinary expansion for the wastewater treatment capacities by the government. Research aims to select the priority restoration streams based on the chronicle data for tributaries in Geumgang watershed as the main stream area in the Chungchungnamdo province. The quality of BOD, phosphorus and percent of sewered population on 15 branch streams were compared by the grouping methods. The results of group D streams by category I that exceed 3.0 mg/L for BOD and 0.1 mg/L for phosphorus were Seuksung, Ganggyung and Bangchuk stream. The results of group D streams by category II that exceed 3.0 mg/L for BOD and less than 63.5 % of average percent of sewered population were Ganggyung, Gilsan, Bangchuk and Seuksung stream. The final results of selected streams drawn by the chronicle data which exceeded the standard quality and lower than the average percent of sewered population were Seoksung, Gangeyung and Bangchuk stream. The pollution of rivers in the down streams were more serious than in the upper streams. Their watersheds have to be improved river water quality, especially to extend sewer systems as well as wastewater treatment facilities.
Nowadays the existing data processing systems can only support some simple query for sensor network. It is increasingly important to process the vast data streams in sensor network, and achieve effective acknowledges for users. In this paper, we propose a holistic distributed k-means algorithm for sensor network. In order to verify the effectiveness of this method, we compare it with central k-means algorithm to process the data streams in sensor network. From the evaluation experiments, we can verify that the proposed algorithm is highly capable of processing vast data stream with less computation time. This algorithm prefers to cluster the data streams at the distributed nodes, and therefore it largely reduces redundant data communications compared to the central processing algorithm.
개인용 컴퓨터 및 각종 모바일 기기의 이용 증가로 인해 많은 분야에서 다양한 형태의 웹기반 서비스들이 널리 활용되고 있다. 이에 따라 해당 분야에서 개인 맞춤형 서비스를 지원하기 위한 사용자 이용 로그 분석 등에 대한 연구가 활발히 진행되고 있으며, 특히 사용자 로그 데이터를 구성하는 구성요소의 중요성 차별화에 기반한 분석 기법들이 활발히 연구되었다. 본 논문에서는 웹 클릭 스트림에서 유용하게 적용될 수 있는 고유용 과거 정보 탐색 기법을 제시한다. 해당 기법을 통해 기존의 웹 클릭 스트림 분석 기법에서는 쉽게 탐색하지 못했던 정보인 타겟 마케팅 등에 유용하게 활용될 수 있는 중요 정보를 쉽게 탐색할 수 있다. 본 논문의 연구 결과는 IoT 환경 및 생물정보 분석 등과 같이 데이터 스트림 형태로 정보를 발생시키는 다양한 컴퓨터 응용 분야에도 활용될 수 있을 것이다.
인터넷 사용의 급증과 더불어 보다 편리한 인터넷 서비스를 위한 여러 연구가 활발히 진행되어 왔다. 웹 로그 데이터로부터 빈번하게 발생되는 웹 페이지들의 방문 시퀀스를 탐색하는 기법 역시 효과적인 웹 사이트를 설계하기 위한 목적으로 많이 연구되어 왔다. 그러나 기존의 방법들은 모두 여러 번의 데이터베이스 스캔을 필요로 하는 방법으로 지속적으로 생성되는 웹 로그 데이터로부터 빠르게 실시간적으로 웹 페이지 방문 시퀀스를 탐색하기에는 많은 어려움이 있었다. 또한 점진적(incremental)이고 대화형식(interactive)의 탐색 기법 역시 지속적으로 생성되는 웹 로그 데이터를 처리하기 위하여 필요한 기능들이다. 본 논문에서는 지속적으로 생성되는 웹 로그 데이터로부터 단일 스캔을 통하여 빈번히 발생하는 웹 페이지 방문 시퀀스를 점진적이고 대화 형식적인 방법으로 탐색하는 방법을 제안한다. 제안하는 방법은 WTS(web traversal sequence)-트리 구조를 사용하며 다양한 실험을 통하여 기존의 방법들에 비해 성능적으로 우수하고 효과적인 방범임을 증명한다.
Aggregation join queries are an important class of queries over data streams. These queries involve both join and aggregation operations, with window-based joins followed by an aggregation on the join output. All existing research address join query optimization and aggregation query optimization as separate problems. We observe that, by putting them within the same scope of query optimization, more efficient query execution plans are possible through more versatile query transformations. The enabling idea is to perform aggregation before join so that the join execution time may be reduced. There has been some research done on such query transformations in relational databases, but none has been done in data streams. Doing it in data streams brings new challenges due to the incremental and continuous arrival of tuples. These challenges are addressed in this paper. Specifically, we first present a query processing model geared to facilitate query transformations and propose a query transformation rule specialized to work with streams. The rule is simple and yet covers all possible cases of transformation. Then we present a generic query processing algorithm that works with all alternative query execution plans possible with the transformation, and develop the cost formulas of the query execution plans. Based on the processing algorithm, we validate the rule theoretically by proving the equivalence of query execution plans. Finally, through extensive experiments, we validate the cost formulas and study the performances of alternative query execution plans.
본 논문은 멀티미디어 데이터 스트림들을 이동단말기에서 연출(play)하기 위해 스트림의 특성을 파악한 후 변환 시킬 스트림을 선정하여 트랜스코딩하는 스케줄링 기법을 제시하였다. 이것은 연출될 모든 스트림들을 트랜스코딩하는 것보다 선정정책에 의해 특정 스트림을 선택하여 트랜스코딩하는 것이 최초 재생 지연 시간을 줄일 수 있는 장점이 있다. 따라서 본 논문은 멀티미디어 데이터 스트림들의 요구 대역폭을 네트워크 대역폭 보다 낮추면서, 이동 단말기에서 멀티미디어 데이터 스트림들이 재생되기까지의 최초 재생 지연시간을 최소화시킬 수 있는 방법으로 EPOB(End Point of Over Bandwidth) 기반의 트랜스코딩 스트림 선정 정책을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.