DOI QR코드

DOI QR Code

Finding high utility old itemsets in web-click streams

웹 클릭 스트림에서 고유용 과거 정보 탐색

  • 장중혁 (대구대학교 컴퓨터IT공학부)
  • Received : 2016.02.12
  • Accepted : 2016.04.07
  • Published : 2016.04.30

Abstract

Web-based services are used widely in many computer application fields due to the increasing use of PCs and mobile devices. Accordingly, topics on the analysis of access logs generated in the application fields have been researched actively to support personalized services in the field, and analyzing techniques based on the weight differentiation of information in access logs have been proposed. This paper outlines an analysis technique for web-click streams, which is useful for finding high utility old item sets in web-click streams, whose data elements are generated at a rapid rate. Using the technique, interesting information can be found, which is difficult to find in conventional techniques for analyzing web-click streams and is used effectively in target marketing. The proposed technique can be adapted widely to analyzing the data generated in a range of computing application fields, such as IoT environments, bio-informatics, etc., which generated data as a form of data streams.

개인용 컴퓨터 및 각종 모바일 기기의 이용 증가로 인해 많은 분야에서 다양한 형태의 웹기반 서비스들이 널리 활용되고 있다. 이에 따라 해당 분야에서 개인 맞춤형 서비스를 지원하기 위한 사용자 이용 로그 분석 등에 대한 연구가 활발히 진행되고 있으며, 특히 사용자 로그 데이터를 구성하는 구성요소의 중요성 차별화에 기반한 분석 기법들이 활발히 연구되었다. 본 논문에서는 웹 클릭 스트림에서 유용하게 적용될 수 있는 고유용 과거 정보 탐색 기법을 제시한다. 해당 기법을 통해 기존의 웹 클릭 스트림 분석 기법에서는 쉽게 탐색하지 못했던 정보인 타겟 마케팅 등에 유용하게 활용될 수 있는 중요 정보를 쉽게 탐색할 수 있다. 본 논문의 연구 결과는 IoT 환경 및 생물정보 분석 등과 같이 데이터 스트림 형태로 정보를 발생시키는 다양한 컴퓨터 응용 분야에도 활용될 수 있을 것이다.

Keywords

References

  1. L. Chen and Q. Mei, "Mining frequent items in data stream using time fading model," Information Sciences, 257(1), pp. 54-69, 2014. DOI: http://dx.doi.org/10.1016/j.ins.2013.09.007
  2. B.-E. Shie, P.S. Yu, and V. S. Tseng, "Efficient algorithms for mining maximal high utility itemsets from data streams with different models," Expert Systems with Applications, 39(17), pp. 12947-12960, 2012. DOI: http://dx.doi.org/10.1016/j.eswa.2012.05.035
  3. C. Zhang, F. Masseglia, and Y. Lechevallier, "The anti-bouncing data stream model for web usage streams," Information Sciences, 278(1), pp. 757-772, 2014. DOI: http://dx.doi.org/10.1016/j.ins.2014.03.089
  4. T. Yoon and J.-H. Lee, "Adaptive web search based on user web log," Journal of the Korea Academia-Industrial cooperation Society, 15(11), pp. 6856-6862, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.11.6856
  5. J.-H. Chang, "Mining interesting sequential pattern with a time-interval constraint for efficient analyzing a web-click stream," Journal of the Korea Industrial Information Systems Research, 16(2), pp. 19-29, 2011. DOI: http://dx.doi.org/10.9723/jksiis.2011.16.2.019
  6. H.-K. Lee, "A study on web-user clustering algorithm for web personalization," Journal of the Korea Academia-Industrial cooperation Society, 12(5), pp. 2375-2382, 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.5.2375
  7. C.-W. Li and K.-F. Jea, "An adaptive approximation method to discover frequent itemsets over sliding-window-based data streams," Expert Systems with Applications, 38(10), pp. 13386-13404, 2011. DOI: http://dx.doi.org/10.1016/j.eswa.2011.04.167
  8. H.-F. Li and S.-Y. Lee, "Mining frequent itemsets over data streams using efficient window sliding techniques," Expert Systems with Applications, 36(2), pp. 1466-1477, 2009. DOI: http://dx.doi.org/10.1016/j.eswa.2007.11.061
  9. H. Chen, L.C. Shu, J. Xia, and Q. Deng, "Mining frequent patterns in a varying-size sliding window of online transactional data streams," Information Sciences, 215(1), pp. 15-36, 2012. DOI: http://dx.doi.org/10.1016/j.ins.2012.05.007
  10. C.C. Aggarwal and P.S. Yu, "A framework for clustering uncertain data streams," in Proc. of the Int'l Conf. on Data Engineering, pp. 150-159, 2008. DOI: http://dx.doi.org/10.1109/icde.2008.4497423
  11. J.H. Chang and W.S. Lee, "Finding Recently Frequent Itemsets Adaptively over Online Transactional Data Streams," Information Systems, 31(8), pp. 849-869, 2006. DOI: http://dx.doi.org/10.1016/j.is.2005.04.001
  12. R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules," in Proc. of the 20thInternational Conf. on Very Large Data Bases, pp. 487-499, 1994.