• Title/Summary/Keyword: data process

검색결과 23,905건 처리시간 0.045초

주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술 (IoT-Based Device Utilization Technology for Big Data Collection in Foundry)

  • 김문조;김동응
    • 한국주조공학회지
    • /
    • 제41권6호
    • /
    • pp.550-557
    • /
    • 2021
  • 4차 산업혁명의 도래에 따라 주물공장에서도 사물인터넷(Internet of things, IoT) 기반의 공정 스마트화에 대한 관심이 높아지고 있다. 주물공장에서 자동 수집 되고 있는 공정데이터들도 일부 있으나 노후된 생산설비의 제한된 기능, 작업자 노하우 기반의 공정 설계 등의 이유로 여전히 많은 공정데이터가 수기로 관리되고 있다. 특히, 공정데이터의 빅데이터화에 대한 중요도를 인지함에도 불구하고 시스템 구축 비용 부담으로 인해 선뜻 도입을 어려워하는 기업들이 많다. 본 연구에서는 IoT 기반 디바이스를 제작하고 원심주조공정 현장에 직접 적용함으로써 제작 디바이스의 현장 활용성을 살펴보았다. 원심주조공정에 대해 취득하고자 하는 공정 인자로 작업현장의 온도 및 습도, 용탕 온도, 금형 회전속도를 선정하였다. 데이터 취득 인자별로 요구되는 상세 제품규격과 비용을 고려하여 센서를 선정하였으며, IoT 기반 디바이스 제작을 위해 무선통신이 가능한 NodeMCU 보드를 활용하여 회로를 구성하였다. 구성한 회로는 PCB 기판으로 제작하여 각 공정 인자별 디바이스의 설치 환경을 고려하여 작업 현장에 설치하였으며, 현장 실증을 통해 적용 가능성을 확인하였다. 현장 적용 이후, 작업자의 안전에 대한 만족도가 상승하였으며, 공정 관리 측면에서 효율성이 증가했음이 확인되었다. 더불어 지속적으로 데이터를 수집하면 추후 공정데이터-품질데이터의 연계가 가능할 것으로 기대된다. 본 연구에서 제작한 IoT 디바이스는 데이터 수집에 대한 적절한 신뢰도를 확보하면서도 비용이 저렴하여, 주물공장별로 현장 상황을 고려하여 도입 여부를 검토해볼 수 있을 것으로 생각된다.

조선 산업에서 프로세스 마이닝을 이용한 블록 조립 프로세스의 계획 및 실적 비교 분석 (Comparison between Planned and Actual Data of Block Assembly Process using Process Mining in Shipyards)

  • 이동하;박재훈;배혜림
    • 한국전자거래학회지
    • /
    • 제18권4호
    • /
    • pp.145-167
    • /
    • 2013
  • 본 논문에서는 조선 산업에서 블록 조립 작업에 대한 계획 프로세스와 실적 프로세스를 비교하는 방법을 제안한다. 제안한 방법은 계획과 실적 데이터 기반으로 프로세스 마이닝 기법을 이용하여 프로세스 모델을 도출하고 비교 분석을 수행하는데, 분석 절차는 1) 데이터 전처리, 2) 분석 수준의 정의, 3) 조립 블록 군집화, 4) 군집별 프로세스 모델 도출, 5) 계획과 실적 프로세스 모델 비교, 다섯 단계로 구성된다. 단계 5에서는 프로세스 모델, 작업, 프로세스 인스턴스, 모델 적합도와 같은 다양한 관점에서 계획과 실적의 프로세스를 비교할 것을 제안하고, 각 관점별 비교 인자들을 정의한다. 특히, 적합도 관점에서는 교차 적합도를 정의하여, 도출된 프로세스 모델에 대해 자신의 데이터에 대한 적합도뿐만 아니라, 상대 데이터(계획 모델의 경우 실적 데이터, 실적 모델의 경우 계획 데이터)에 대한 적합도를 계산하고 비교 분석할 것을 제안한다. 제안한 방법의 효용성은 세계 최고 수준의 국내 조선 업체의 블록 조립 계획 시스템과 블록 조립 모니터링 시스템의 실제 데이터를 이용하여 사례 연구를 통해 설명하고 검증하였다.

Big Data Platform Based on Hadoop and Application to Weight Estimation of FPSO Topside

  • Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su;Oh, Min-Jae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.32-40
    • /
    • 2017
  • Recently, the amount of data to be processed and the complexity thereof have been increasing due to the development of information and communication technology, and industry's interest in such big data is increasing day by day. In the shipbuilding and offshore industry also, there is growing interest in the effective utilization of data, since various and vast amounts of data are being generated in the process of design, production, and operation. In order to effectively utilize big data in the shipbuilding and offshore industry, it is necessary to store and process large amounts of data. In this study, it was considered efficient to apply Hadoop and R, which are mostly used in big data related research. Hadoop is a framework for storing and processing big data. It provides the Hadoop Distributed File System (HDFS) for storing big data, and the MapReduce function for processing. Meanwhile, R provides various data analysis techniques through the language and environment for statistical calculation and graphics. While Hadoop makes it is easy to handle big data, it is difficult to finely process data; and although R has advanced analysis capability, it is difficult to use to process large data. This study proposes a big data platform based on Hadoop for applications in the shipbuilding and offshore industry. The proposed platform includes the existing data of the shipyard, and makes it possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weights of offshore structure topsides. In this study, we store data of existing FPSOs in Hadoop-based Hortonworks Data Platform (HDP), and perform regression analysis using RHadoop. We evaluate the effectiveness of large data processing by RHadoop by comparing the results of regression analysis and the processing time, with the results of using the conventional weight estimation program.

개인 소프트웨어 프로세스 지원을 위한 도구 (A Tool to Support Personal Software Process)

  • 신현일;정경학;송일선;최호진;백종문
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권8호
    • /
    • pp.752-762
    • /
    • 2007
  • 개발자 개개인의 소프트웨어 개발 프로세스를 개선시켜 소프트웨어의 품질을 향상시킬 수 있도록 돕는 기법으로 PSP(Personal Software Process)가 널리 쓰이고 있다. PSP에 제시된 측정 및 분석활동을 지속적으로 수행함으로써 개별 개발자는 자신의 개발 프로세스에 내재된 약점을 파악할 수 있고, 이렇게 수집된 과거 프로젝트의 데이타를 이용하여 공수와 품질에 대한 예측의 정확도를 높일 수 있다. 그러나 수동으로 행해지는 데이타 수집의 오버헤드와 개발작업-측정작업 간의 문맥전환에 따른 집중력 분산의 문제점으로 인해 신뢰도 높은 데이타를 수집하기가 쉽지 않은 것이 현실이다. 한편, PSP에 제시된 문서형태의 프로세스 가이드는 프로세스 정보 검색의 불편함과 추가적인 정보를 삽입하는 데 어려움을 가지고 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 개발된 PSP 지원도구를 소개한다. 개발된 도구는 데이타 수집의 신뢰성을 높이기 위해 데이타 자동 수집 기능을 제공하고, PSP 프로세스 정보의 효율적인 검색을 위한 EPG(Electronic Process Guide) 기능 및 추가적인 프로세스 정보의 저장을 위한 경험 저장소 기능을 제공한다.

Note on the Transformed Geometric Poisson Processes

  • Park, Jeong-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권2호
    • /
    • pp.135-141
    • /
    • 1997
  • In this paper, it is investigated the properties of the transformed geometric Poisson process when the intensity function of the process is a distribution of the continuous random variable. If the intensity function of the transformed geometric Poisson process is a Pareto distribution then the transformed geometric Poisson process is a strongly P-process.

  • PDF

연관규칙과 순차패턴을 이용한 프로세스 마이닝 (A Process Mining using Association Rule and Sequence Pattern)

  • 정소영;권수태
    • 산업경영시스템학회지
    • /
    • 제31권2호
    • /
    • pp.104-111
    • /
    • 2008
  • A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.

A Study on the Monitoring of Reject Rate in High Yield Process

  • Nam, Ho-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권3호
    • /
    • pp.773-782
    • /
    • 2007
  • The statistical process control charts are very extensively used for monitoring of process mean, deviation, defect rate or reject rate. In this paper we consider a control chart to monitor the process reject rate in the high yield process, which is based on the observed cumulative probability of the number of items inspected until r defective items are observed. We first propose selection of the optimal value of r in the CPC-r charts, and also consider the usefulness of the chart in high yield process such as semiconductor or TFT-LCD manufacturing process.

  • PDF

Multivariate Control Charts for Autocorrelated Process

  • Cho, Gyo-Young;Park, Mi-Ra
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.289-301
    • /
    • 2003
  • In this paper, we propose Shewhart control chart and EWMA control chart using the autocorrelated data which are common in chemical and process industries and lead to increase the number of false alarms when conventional control charts are applied. The effect of autocorrelated data is modeled as a autoregressive process, and canonical analysis is used to reduce the dimensionality of the data set and find the canonical variables that explain as much of the data variation as possible. Charting statistics are constructed based on the residual vectors from the canonical variables which are uncorrelated over time, and the control charts for these statistics can attenuate the autocorrelation in the process data. The charting procedures are illustrated with a numerical example and simulation is conducted to investigate the performances of the proposed control charts.

  • PDF

데이터마이닝 기법을 이용한 제조 공정내의 불량항목별 예측방법 (Defect Type Prediction Method in Manufacturing Process Using Data Mining Technique)

  • 변성규;강창욱;심성보
    • 산업경영시스템학회지
    • /
    • 제27권2호
    • /
    • pp.10-16
    • /
    • 2004
  • Data mining technique is the exploration and analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns and rules. This paper uses a data mining technique for the prediction of defect types in manufacturing Process. The Purpose of this Paper is to model the recognition of defect type Patterns and Prediction of each defect type before it occurs in manufacturing process. The proposed model consists of data handling, defect type analysis, and defect type prediction stages. The performance measurement shows that it is higher in prediction accuracy than logistic regression model.

업무 프로세스와 데이터 요구사항의 통합 모델링 (A Modeling Approach to Integrate Business Processes and Data Requirements)

  • 장무경
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2011년도 춘계학술대회
    • /
    • pp.329-338
    • /
    • 2011
  • Business processes are often of long duration, and include internal worker's decision making, which makes business processes to be exposed to many exceptional situations. These properties of business processes makes it difficult to design processes to support uncertainties from internal or external environments. The behavioral properties of business processes mainly depends on the data aspects of business processes. To formalize the data aspect of process modeling, this paper proposes a graph-based model, called Data Dependency Graph (DDG), constructed from dependency relationships specified between business data. The paper also defines a mechanism of describing a set of mapping rules that generates a process model semantically equivalent to a DDG, which is accomplished by allocating data dependencies to component activities.

  • PDF