Purpose: The purpose of this study is to examine five evaluation models constructed by different normalization and aggregation methods in terms of the volatility of rankings and rank reversals. We also explore how the volatility of rankings of the five models changes and how often the rank reversals occur when the outliers are removed. Methods: We used data published in the Complete University Guide 2014. Two universities with missing values were excluded from the data. The university rankings were derived by using the five models, and then each model's volatility of rankings was measured. The box-plot was used to detect outliers. Results: Model 1 has the lowest volatility among the five models whether or not the outliers are included. Model 5 has the lowest number of rank reversals. Model 3, which has been used by many institutions, appears to be in the middle among the five in terms of the volatility and the rank reversals. Conclusion: The university rankings vary from one evaluation model to another depending on what normalization and aggregation methods are used. No single model exhibits clear superiority over others in both the volatility and the rank reversal. The findings of this study are expected to provide a stepping stone toward a superior model which is both reliable and robust.
Motivation: Many have observed a nonlinear relationship between the signal intensity and the transcript abundance in microarray data. The first step in analyzing the data is to normalize it properly, and this should include a correction for the nonlinearity. The commonly used linear normalization schemes do not address this problem. Results: Nonlinearity is present in both cDNA and oligonucleotide arrays, but we concentrate on the latter in this paper. Across a set of chips, we identify those genes whose within-chip ranks are relatively constant compared to other genes of similar intensity. For each gene, we compute the sum of the squares of the differences in its within-chip ranks between every pair of chips as our statistic and we select a small fraction of the genes with the minimal changes in ranks at each intensity level. These genes are most likely to be non-differentially expressed and are subsequently used in the normalization procedure. This method is a generalization of the rank-invariant normalization (Li and Wong, 2001), using all available chips rather than two at a time to gather more information, while using the chip that is least likely to be affected by nonlinear effects as the reference chip. The assumption in our method is that there are at least a small number of nondifferentially expressed genes across the intensity range. The normalized expression values can be substantially different from the unnormalized values and may result in altered down-stream analysis.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권11호
/
pp.4028-4042
/
2021
Aiming at the problem of software defect prediction difficulty caused by insufficient software defect marker samples and unbalanced classification, a semi-supervised software defect prediction model based on a tri-training algorithm was proposed by combining feature normalization, over-sampling technology, and a Tri-training algorithm. First, the feature normalization method is used to smooth the feature data to eliminate the influence of too large or too small feature values on the model's classification performance. Secondly, the oversampling method is used to expand and sample the data, which solves the unbalanced classification of labelled samples. Finally, the Tri-training algorithm performs machine learning on the training samples and establishes a defect prediction model. The novelty of this model is that it can effectively combine feature normalization, oversampling techniques, and the Tri-training algorithm to solve both the under-labelled sample and class imbalance problems. Simulation experiments using the NASA software defect prediction dataset show that the proposed method outperforms four existing supervised and semi-supervised learning in terms of Precision, Recall, and F-Measure values.
Load forecasting is very important for power system analysis and planning. This paper suggests yearly load forecasting of considering weekly normalization and seasonal load characteristics. Each weekly peak load is normalized and the average value is calculated. The new hourly peak load is seasonally collected. This method was used for yearly load forecasting. The results of the actual data and forecast data were calculated error rate by comparing.
There are many sources of systematic variations in cDNA microarray experiments which affect the measured gene expression levels like differences in labeling efficiency between the two fluorescent dyes. Print-tip lowess normalization is used in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. However, print-tip lowess normalization performs poorly in situation where error variability for each gene is heterogeneous over intensity ranges. We proposed the new print-tip normalization methods based on support vector machine regression(SVMR) and support vector machine quantile regression(SVMQR). SVMQR was derived by employing the basic principle of support vector machine (SVM) for the estimation of the linear and nonlinear quantile regressions. We applied our proposed methods to previous cDNA micro array data of apolipoprotein-AI-knockout (apoAI-KO) mice, diet-induced obese mice, and genistein-fed obese mice. From our statistical analysis, we found that the proposed methods perform better than the existing print-tip lowess normalization method.
Although many children with cerebral palsy have problems with their eye movements available data on its intervention is minimal. The purpose of the study was to determine the effectiveness of the postural movement normalization and eye movement program on the oculomotor ability of children with cerebral palsy. Twenty-four children with cerebral palsy (12 male and 12 female), aged between 10 and 12, were invited to partake in this study. The subjects were randomly allocated to two groups: an experimental group received the postural movement normalization and eye movement program and a control group which received conventional therapy without the eye movement program. Each subject received intervention three times a week for twelve weeks. The final measurement was the ocular motor computerized test before and after treatment sessions through an independent assessor. Differences between the experimental group and control group were determined by assessing changes in oculomotor ability using analysis of covariance (ANCOVA). The changes of visual fixation (p<.01), saccadic eye movement (p<.01) and pursuit eye movement (p<.01) were significantly higher in the experimental group than in the control group. These results show that the postural movement normalization and eye movement program may be helpful to treat children with cerebral palsy who lose normal physical and eye movement.
마이크로어레이 실험의 실험자들은 원 측정치인 영상을 조사하여 통계적 분석이 가능한 자료의 형태로 변환하는데 이러한 과정을 흔히 사전 처리라고 부른다. 마이크로어레이의 사전 처리는 불량 영상의 제거(filtering), 결측치의 대치와 표준화로 세분되어질 수 있다. 표준화 방법과 결측치 대치 방법 각각에 대하여서는 많은 연구가 보고되었으나, 사전 처리를 구성하는 원소들간의 적정한 순서에 대하여서는 연구가 미흡하다. 표준화 방법과 결측치 대치 방법 중 어느 것이 먼저 실시되어야 하는지에 대하여서 아직 알려진 바가 없다. 본 연구는 사전 처리 순서에 대한 탐색적 시도로서 대장암과 위암을 대상으로 실시한 두 조의 cDNA 마이크로어레이 실험 자료를 이용하여 사전 처리를 구성하는 원소들간의 다양한 순서에 따라 검색된 특이 발현 유전자 군이 어떻게 변화하는지를 분석하고 있다. 즉, 결측치대치와 표준화의 여러가지 방법들의 조합에 따라 검색된 특이 발현 유전자 군이 얼마나 일치적인가를 확인하고자 한다. 결측치 대치 방법으로는 K 최근접 이웃 방법과 베이지안 주성분 분석을 고려하였고, 표준화 방법으로는 전체 표준화, 블럭별 국소(within-print tip group) 평활 표준화 그리고 분산 안정화를 유도하는 표준화 방법을 적용하였다. 따라서 사전 처리를 구성하는 두개 원소가 각각 2개 수준과 3개 수준을 가지고 있고, 두개 원소의 순열에 따른 모든 가능한 사전 처리 개수 수는 12개가 된다. 본 연구에서는 12개 사전 처리 방법 각각에 따라 정상 조직과 암 조직간 특이적으로 발현하는 유전자 군을 검색하였고, 사전 처리 순서를 바꾸었을때 유전자 군이 얼마나 일치적으로 유지되는지를 파악하고 있다. 표준화 방법으로 분산 안정화 표준화를 사용할 경우는 사전 처리 순서에 따라 특이 발현 유전자 군이 다소 민감하게 변하는 것을 보이고 있다.
XML이 웹 상에서의 정보 표현, 통합, 교환을 위한 표준이 됨에 따라 다양한 XML 질의 언어들이 제안되었으며, World Wide Web Consortium(W3C)은 XQuery를 XML 질의 언어의 표준으로 권고하였다. XQuery는 SQL과 유사하게 중첩 질의를 허용하므로, 중첩된 XQuery 질의를 동일한 의미를 가지면서 보다 효율적으로 실행될 수 있는 질의로 변환하는 정규화 규칙들이 제안되었다. 하지만 제안된 정규화 규칙들은 제한적인 형태의 중첩 질의에만 적용되는 문제점을 가지고 있다. 특히, FLWR 표현식의 where 절에 있는 중첩을 처리할 수 없다. 본 논문에서는 SQL 질의의 정규화 규칙들을 확장하여 XQuery 질의의 정규화 규칙들을 제안한다. 제안한 정규화 규칙들은 FLWR 표현식의 모든 절에 나타나는 중첩을 처리할 수 있다. 본 논문의 주요 공헌은 다음과 같다. 첫째, 상관과 집계의 유무에 따라 XQuery 질의의 중첩 유형을 분류하고, 각 유형 별로 정규화 규칙들을 제안한다. 둘째, 중첩된 XQuery 질의에 정규화 규칙들을 적용하는 세부 알고리즘들을 제안한다.
본 논문에서는 항만효율성 측정 시 문제가 되었던 두 가지 문제점(첫째, 각기 상이한 기본단위를 갖는 투입변수와 산출변수의 정규화문제, 둘째, DEA분석의 기본가정인 비음수조건에 벗어난 자료, 즉, 음수를 갖는 투입-산출자료의 변환불변성)를 해결하기 위해서 국내 26개항만의 자료를 이용하여 실증분석을 한 후에 검증을 함으로써 항만효율성 측정방법을 부분적으로 확장시켰다. 본 논문의 실증분석의 핵심적인 결과는 다음과 같다. 첫째, 항만효율성 측정 시 사용되는 자료의 정규성과 변환불변성은 실증분석 결과 분명하게 있는 것으로 검증되었다. 둘째, 항만효율성 측정 시 사용되는 자료가 마이너스(-)인 경우에 가장 큰 음수보다 더 큰 양수를 더해 주는 이른바 자료의 변환를 검증하는 변환불변성은 투입지향-산출지향 BCC 모형에서 확인되었다. 위와 같은 실증분석 결과는 다음과 같은 정책적인 함의를 갖고 있다. 즉, 효율성 측정 시 사용되는 자료의 정규성과 변환불변성이 실증적으로 검증되었으므로, 국내 항만의 정책입안가들은 항만효율성 측정 시 이용되는 자료의 정규성과 변환불변성과 같은 사항을 고려하여 보다 세부적인 항만통계자료를 수집 ${\cdot}$ 정리 ${\cdot}$ 공표하는 것이 매우 필요하다. 예를 들면 항만사고와 같은 통계도 해역별이 아닌 항만별로 세부적으로 통계를 발행하도록 관련된 정책적인 지원이 필요하다.
The purpose of this study was to build a substantive theory about the experience of the maternal uncertainty in childhood chronic illness. The qualitative research method used was grounded theory. The interviewees were 12 mothers who have cared for a child who had chronic illness. The data were collected through in-depth interviews with audiotape recording done by the investigator over a period of nine months. The data were analyzed simutaneously by a constant comparative method in which new data were continuously coded into categories and properties according to Strauss and Corbin's methodology. The 34 concepts were identified as a result of analyzing the grounded data. Ten categories emerged from the analysis. The categories were lack of clarity, unpredictability, unfamiliarity, negative change, anxiety, devotion normalization and burn-out. Causal conditions included : lack of clarity, unpredictability, unfamiliarity and change ; central phenomena : anxiety, being perplexed ; context. seriousness of illness, support ; intervening condition : belief action/interaction strategies devotion, overprotection ; consequences : normalization, burn-out. These categories were synthesized into the core concept-anxiety. The process of experiencing uncertainty was 1) Entering the world of uncertainty, 2) Struggling in the tunnel of uncertainty, 3) Reconstruction of the situation of uncertainty. Four hypotheses were derived from the analysis : (1) The higher the lack of clarity, unpredictability, unfamiliaity, change, the higher the level of uncertainty (2) The more serious the illness and the less the support, the higher the level of uncertainty. (3) The positive believes will influence the devoted care and normalization of the family life. Through this substantive theory, pediatric nurses can understand the process of experiencing maternal uncertainty in childhood chronic illness. Further research to build substantive theories to explain other uncertainties may contribute to a formal theory of how normalization is achieved in the family with chronically ill child.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.