• Title/Summary/Keyword: data modelling

Search Result 1,282, Processing Time 0.029 seconds

Voice Similarities between Brothers

  • Ko, Do-Heung;Kang, Sun-Mee
    • Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • This paper aims to provide a guideline for modelling speaker identification and speaker verification by comparing voice similarities between brothers. Five pairs of brothers who are believed to have similar voices participated in this experiment. Before conducted in the experiment, perceptual tests were measured if the voices were similar between brothers. The words were measured in both isolation and context, and the subjects were asked to read five times with about three seconds of interval between readings. Recordings were made at natural speed in a quiet room. The data were analyzed in pitch and formant frequencies using CSL (Computerized Speech Lab), PCQuirer and MDVP (Multi -dimensional Voice Program). It was found that data of the initial vowels are much more similar and homogeneous than those of vowels in other position. The acoustic data showed that voice similarities are strikingly high in both pitch and formant frequencies. It was also found that the correlation coefficient was not significant between parameters above.

  • PDF

High Resolution AR Spectral Estimation by Principal Component Analysis (Principal Componet Analysis에 의한 고 분해능 AR 모델링과 스텍트럼 추정)

  • 양흥석;이석원;공성곤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.813-818
    • /
    • 1987
  • In this paper, high resolution spectral estimation by AR modelling and principal comonent analysis is proposed. The given data can be expanded by the eigenvectors of the estimated covariance matrix. The eigenspectrum is obtained for each eigenvector using the Autoressive(AR) spectral estimation technique. The final spectrum estimate is obtained by weighting each eigenspectrum with the corresponding eigenvalue and summing them. Although the proposed method increases in computational complexity, it shows good frequency resolution especially for short data records and narrow-band data whose signal-to-noise ratio is low.

Nonparametric Bayesian methods: a gentle introduction and overview

  • MacEachern, Steven N.
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.445-466
    • /
    • 2016
  • Nonparametric Bayesian methods have seen rapid and sustained growth over the past 25 years. We present a gentle introduction to the methods, motivating the methods through the twin perspectives of consistency and false consistency. We then step through the various constructions of the Dirichlet process, outline a number of the basic properties of this process and move on to the mixture of Dirichlet processes model, including a quick discussion of the computational methods used to fit the model. We touch on the main philosophies for nonparametric Bayesian data analysis and then reanalyze a famous data set. The reanalysis illustrates the concept of admissibility through a novel perturbation of the problem and data, showing the benefit of shrinkage estimation and the much greater benefit of nonparametric Bayesian modelling. We conclude with a too-brief survey of fancier nonparametric Bayesian methods.

Developing Predictive Modelling of CO2 Emissions of Construction Equipment Using Artificial Neural Network and Non-linear Regression (인공신경망 및 비선형 회귀분석을 이용한 건설장비의 CO2 배출량 예측 모델 개발)

  • Im, Somin;Noh, Jaeyun;Ro, Sangwoo;Lee, Minwoo;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.16-17
    • /
    • 2019
  • In order to measure the amount of carbon dioxide emitted from the construction sites, many literature which have been conducted have proposed methodologies for calculating coefficients based on actual data collections for estimating the emission formula. The existing data collected under controlled conditions not on site measurement were too limited to apply in actual sites. The purpose of this study is to conduct analysis based on the data measured in fields and to present predictive models using artificial neural network and nonlinear regression analysis for appropriate predictions and practical applications.

  • PDF

Prediction of shear capacity of channel shear connectors using the ANFIS model

  • Toghroli, Ali;Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ibrahim, Zainah
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.623-639
    • /
    • 2014
  • Due to recent advancements in the area of Artificial Intelligence (AI) and computational intelligence, the application of these technologies in the construction industry and structural analysis has been made feasible. With the use of the Adaptive-Network-based Fuzzy Inference System (ANFIS) as a modelling tool, this study aims at predicting the shear strength of channel shear connectors in steel concrete composite beam. A total of 1200 experimental data was collected, with the input data being achieved based on the results of the push-out test and the output data being the corresponding shear strength which were recorded at all loading stages. The results derived from the use of ANFIS and the classical linear regressions (LR) were then compared. The outcome shows that the use of ANFIS produces highly accurate, precise and satisfactory results as opposed to the LR.

Tourist Transition Model among Tourist Attractions based on GPS Trajectory

  • Kasahara, Hidekazu;Watabe, Takeshi;Iiyama, Masaaki
    • Journal of Smart Tourism
    • /
    • v.1 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • Before COVID-19, tourist destinations have experienced problems with congestion of both famous tourist attractions and public transportation. Over-tourism is not an issue at this time, but it is likely to rekindle after the COVID-19 pandemic ends. One method of mitigating over-tourism is to estimate tourist behavior using a tourist transition model and consequently adjust public transportation operations. In this study, we propose a construction method for a model of tourist transitions among tourist attractions based on tourist GPS trajectory data. We construct tourist transition models using actual trajectory data for tourists staying in the vicinity of Kyoto City. The results verify the model performance.

Mean-VaR Portfolio: An Empirical Analysis of Price Forecasting of the Shanghai and Shenzhen Stock Markets

  • Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1201-1210
    • /
    • 2019
  • Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.

Intrusion Detection using Attribute Subset Selector Bagging (ASUB) to Handle Imbalance and Noise

  • Priya, A.Sagaya;Kumar, S.Britto Ramesh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.97-102
    • /
    • 2022
  • Network intrusion detection is becoming an increasing necessity for both organizations and individuals alike. Detecting intrusions is one of the major components that aims to prevent information compromise. Automated systems have been put to use due to the voluminous nature of the domain. The major challenge for automated models is the noise and data imbalance components contained in the network transactions. This work proposes an ensemble model, Attribute Subset Selector Bagging (ASUB) that can be used to effectively handle noise and data imbalance. The proposed model performs attribute subset based bag creation, leading to reduction of the influence of the noise factor. The constructed bagging model is heterogeneous in nature, hence leading to effective imbalance handling. Experiments were conducted on the standard intrusion detection datasets KDD CUP 99, Koyoto 2006 and NSL KDD. Results show effective performances, showing the high performance of the model.

A HAZARDOUS AREA IDENTIFICATION MODEL USING AUTOMATED DATA COLLECTION (ADC) BASED ON BUILDING INFORMATION MODELLING (BIM)

  • Hyunsoo Kim;Hyun-Soo Lee;Moonseo Park;Sungjoo Hwang
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.17-22
    • /
    • 2011
  • A considerable number of construction disasters occur on pathways. Safety management is usually performed on construction sites to prevent accidents in activity areas. This means that the safety management level of hazards on pathways is relatively minimized. Many researchers have noted that hazard identification is fundamental to safety management. Thus, algorithms for helping safety managers to identify hazardous areas are developed using automated data collection technology. These algorithms primarily search for potential hazardous areas by comparing workers' location logs based on a real-time location system and optimal routes based on BIM. Potential hazardous areas are filtered by identified hazardous areas and activity areas. After that, safety managers are provided with information about potential hazardous areas and can establish proper safety countermeasures. This can help to improve safety on construction sites.

  • PDF

Learning motivation of groups classified based on the longitudinal change trajectory of mathematics academic achievement: For South Korean students

  • Yongseok Kim
    • Research in Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.129-150
    • /
    • 2024
  • This study utilized South Korean elementary and middle school student data to examine the longitudinal change trajectories of learning motivation types according to the longitudinal change trajectories of mathematics academic achievement. Growth mixture modeling, latent growth model, and multiple indicator latent growth model were used to examine various change trajectories for longitudinal data. As a result of the analysis, it was classified into 4 subgroups with similar longitudinal change trajectories of mathematics academic achievement, and the characteristics of the mathematics subject, which emphasize systematicity, appeared. Furthermore, higher mathematics academic achievement was associated with higher self-determination and higher academic motivation. And as the grade level increases, amotivation increases and self-determination decreases. This study suggests that teaching and learning support using this is necessary because the level of learning motivation according to self-determination is different depending on the level of mathematics academic achievement reflecting the characteristics of the student.