• Title/Summary/Keyword: data mining(CHAID)

Search Result 32, Processing Time 0.021 seconds

CHAID Algorithm by Cube-based Sampling

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.239-247
    • /
    • 2003
  • Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, etc. CHAID(Chi-square Automatic Interaction Detector), is an exploratory method used to study the relationship between a dependent variable and a series of predictor variables. In this paper we propose and CHAID algorithm by cube-based sampling and explore CHAID algorithm in view of accuracy and speed by the number of variables.

  • PDF

A Study on the Effective Database Marketing using Data Mining Technique(CHAID) (데이터마이닝 기법(CHAID)을 이용한 효과적인 데이터베이스 마케팅에 관한 연구)

  • 김신곤
    • The Journal of Information Technology and Database
    • /
    • v.6 no.1
    • /
    • pp.89-101
    • /
    • 1999
  • Increasing number of companies recognize that the understanding of customers and their markets is indispensable for their survival and business success. The companies are rapidly increasing the amount of investments to develop customer databases which is the basis for the database marketing activities. Database marketing is closely related to data mining. Data mining is the non-trivial extraction of implicit, previously unknown and potentially useful knowledge or patterns from large data. Data mining applied to database marketing can make a great contribution to reinforce the company's competitiveness and sustainable competitive advantages. This paper develops the classification model to select the most responsible customers from the customer databases for telemarketing system and evaluates the performance of the developed model using LIFT measure. The model employs the decision tree algorithm, i.e., CHAID which is one of the well-known data mining techniques. This paper also represents the effective database marketing strategy by applying the data mining technique to a credit card company's telemarketing system.

  • PDF

CHAID Algorithm by Cube-based Proportional Sampling

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.803-816
    • /
    • 2004
  • The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, category merging, etc. CHAID uses the chi-squired statistic to determine splitting and is an exploratory method used to study the relationship between a dependent variable and a series of predictor variables. In this paper we propose CHAID algorithm by cube-based proportional sampling and explore CHAID algorithm in view of accuracy and speed by the number of variables.

  • PDF

Exploration of CHAID Algorithm by Sampling Proportion

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-228
    • /
    • 2003
  • Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, interaction effect identification, category merging and discretizing continuous variable, etc. CHAID(Chi-square Automatic Interaction Detector), is an exploratory method used to study the relationship between a dependent variable and a series of predictor variables. CHAID modeling selects a set of predictors and their interactions that optimally predict the dependent measure. In this paper we explore CHAID algorithm in view of accuracy and speed by sampling proportion.

  • PDF

CHAID Algorithm by Cube-based Proportional Sampling

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.39-50
    • /
    • 2004
  • The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, category merging, etc. CHAID(Chi-square Automatic Interaction Detector) uses the chi-squired statistic to determine splitting and is an exploratory method used to study the relationship between a dependent variable and a series of predictor variables. In this paper we propose CHAID algorithm by cube-based proportional sampling and explore CHAID algorithm in view of accuracy and speed by the number of variables.

  • PDF

Data Mining for Knowledge Management in a Health Insurance Domain

  • Chae, Young-Moon;Ho, Seung-Hee;Cho, Kyoung-Won;Lee, Dong-Ha;Ji, Sun-Ha
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2000
  • This study examined the characteristicso f the knowledge discovery and data mining algorithms to demonstrate how they can be used to predict health outcomes and provide policy information for hypertension management using the Korea Medical Insurance Corporation database. Specifically this study validated the predictive power of data mining algorithms by comparing the performance of logistic regression and two decision tree algorithms CHAID (Chi-squared Automatic Interaction Detection) and C5.0 (a variant of C4.5) since logistic regression has assumed a major position in the healthcare field as a method for predicting or classifying health outcomes based on the specific characteristics of each individual case. This comparison was performed using the test set of 4,588 beneficiaries and the training set of 13,689 beneficiaries that were used to develop the models. On the contrary to the previous study CHAID algorithm performed better than logistic regression in predicting hypertension but C5.0 had the lowest predictive power. In addition CHAID algorithm and association rule also provided the segment characteristics for the risk factors that may be used in developing hypertension management programs. This showed that data mining approach can be a useful analytic tool for predicting and classifying health outcomes data.

  • PDF

Evaluations of predicted models fitted for data mining - comparisons of classification accuracy and training time for 4 algorithms (데이터마이닝기법상에서 적합된 예측모형의 평가 -4개분류예측모형의 오분류율 및 훈련시간 비교평가 중심으로)

  • Lee, Sang-Bock
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.113-124
    • /
    • 2001
  • CHAID, logistic regression, bagging trees, and bagging trees are compared on SAS artificial data set as HMEQ in terms of classification accuracy and training time. In error rates, bagging trees is at the top, although its run time is slower than those of others. The run time of logistic regression is best among given models, but there is no uniformly efficient model satisfied in both criteria.

  • PDF

A Comparative Study of Medical Data Classification Methods Based on Decision Tree and System Reconstruction Analysis

  • Tang, Tzung-I;Zheng, Gang;Huang, Yalou;Shu, Guangfu;Wang, Pengtao
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.102-108
    • /
    • 2005
  • This paper studies medical data classification methods, comparing decision tree and system reconstruction analysis as applied to heart disease medical data mining. The data we study is collected from patients with coronary heart disease. It has 1,723 records of 71 attributes each. We use the system-reconstruction method to weight it. We use decision tree algorithms, such as induction of decision trees (ID3), classification and regression tree (C4.5), classification and regression tree (CART), Chi-square automatic interaction detector (CHAID), and exhausted CHAID. We use the results to compare the correction rate, leaf number, and tree depth of different decision-tree algorithms. According to the experiments, we know that weighted data can improve the correction rate of coronary heart disease data but has little effect on the tree depth and leaf number.

A Feature Analysis of Industrial Accidents Using CHAID Algorithm (CHAID 알고리즘을 이용한 산업재해 특성분석)

  • Leem Young-Moon;Hwang Young-Seob
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.5
    • /
    • pp.59-67
    • /
    • 2005
  • The main objective of the statistical analysis about industrial accidents is to find out what is the dangerous factor in its own industrial field so that it is possible to prevent or decrease the number of the possible accidents by educating those who work in the fields for safety tools. However, so far, there is no technique of quantitative evaluation on danger. Almost all previous researches as to industrial accidents have only relied on the frequency analysis such as the analysis of the constituent ratio on accidents. As an application of data mining technique, this paper presents analysis on the efficiency of the CHAID algorithm to classify types of industrial accidents data and thereby identifies potential weak points in accident risk grouping.

A Study on Development of A Web-Based Forecasting System of Industrial Accidents (웹 기반의 산업재해 예측시스템 개발에 관한 연구)

  • Leem, Young-Moon;Hwang, Young-Seob;Choi, Yo-Han
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.269-274
    • /
    • 2007
  • Ultimate goal of this research is to develop a web-based forecasting system of industrial accidents. As an initial step for the purpose of this study, this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. In addition, this paper presents the logical process for development of a forecasting system. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. The sample for this work was chosen from 10,536 data related to manufacturing industries during three years(2002$^{\sim}$2004) in korea.

  • PDF