• Title/Summary/Keyword: damage resilience

Search Result 84, Processing Time 0.029 seconds

A Study on Local Economic Resilience after Disasters through Time Series Analysis -Focusing on the Sewol Ferry Disaster- (시계열자료 분석을 통한 재난발생 이후 지역경제 회복력(resilience)에 관한 연구 -세월호 참사를 중심으로-)

  • Kwon, Seol A
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.456-463
    • /
    • 2018
  • Increases in disasters and damage caused by the disasters in modern society, have a negative impact on local economy. In particular, a local economic downturn leads to a deterioration in quality of life of local residents and causes mental and material damage. Therefore, in order to achieve stable and sustainable local economic development, it is necessary to strengthen the resilience of the local economy. This study aims to estimate indicators of local economic resilience of Jindo County after the Sewol Ferry disaster, analyze a trend of the economic level after the disaster through time series data and suggest improvement plans of the local crisis management and restoration policy that considers future economic resilience. Results of this study showed that a decrease in the number of tourists and of workers in related industries hit tourism industry, causing a loss to the local economy and that an increase in a drinking rate of and stress awareness rate of local residents was a stress factor due to disaster impacts. These findings provides policy implications that it is necessary to make efforts for improving the depressed local image by utilizing local resources in the area, to build a sustainable long-term economic recovery policy and to provide psychological treatment and the relevant government and local government's support for relieving the stress of local residents due to the disaster impacts.

Natural Frequency Analysis of Sleeper Floating Track System using Modal Test Technique (모달시험기법을 이용한 침목플로팅궤도의 고유진동수 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.833-838
    • /
    • 2024
  • The urban railway sleeper floating track(STEDEF) is a structure that structurally separates the sleepers and the concrete bed using sleeper boots and resilience pads to reduce vibration transmitted to the concrete bed. Recently, the resilience pads of sleeper floating tracks that have been in use for more than 20 years are deteriorating. Accordingly, in order to evaluate the performance of the resilience pad, a static spring stiffness test is being performed after extracting the resilience pad. This evaluation technique is performed after replacing the resilience pad in use. However, the track natural frequency can change depending on the resilience pad spring stiffness and the uplift and subsidence of the concrete bed. In this study, modal testing technique was used to evaluate the track natural frequency. For this purpose, the sleeper boots material, resilience pad spring stiffness, and track natural frequency according to concrete bed uplift and subsidence were measured using modal tests at a laboratory scale. It was analyzed that the natural frequency of the sleeper floating track was directly affected by changes in the spring stiffness of the resilience pad. In addition, the change in natural frequency due to the uplift and subsidence of the concrete bed was also found to be large. Therefore, it is believed that the modal test technique presented in this study can be used to evaluate the resilience pad deterioration and voided sleepers.

A Study of the Automatic Operation Performance of a Pump Station using Resilience Considering Residual Flows (잔류유량 기반 복원력 지수를 통한 빗물펌프장 자동운영 성능 검토)

  • Kim, Young Nam;Lee, Eui Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.793-802
    • /
    • 2022
  • Non-structural improvements to urban drainage systems are necessary to overcome the elevated levels of urban flood damage. This study proposed a type of automatic pump/gate operation technology for urban pump stations that takes reservoir inflows and river water levels into account and its performance is compared with the current operation using the concept of residual flow-based resilience. The proposed automatic operation relies on three pump operations and two gate operations. The water depth at the monitoring node was used for the pump operation, and the monitoring node was selected in consideration of the first overflow node and the maximum overflow node. The target area is the Daegu Bisan urban pump station, and the rainfall data consisted of probability rainfall sets with durations of 30 minutes, 60 minutes, 90 minutes and 120 minutes, and frequencies of 30, 50, and 70 years. As a result of the application of the proposed operation, differences in the resilience between the automatic operation and the current operation were at least 5.20E-05 with a maximum of 8.07E-04. The longer the duration is, the greater the difference in the resilience.

Seismic multi-level optimization of dissipative re-centering systems

  • Panzera, Ivan;Morelli, Francesco;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.129-145
    • /
    • 2020
  • Seismic resilience is a key feature for buildings that play a strategic role within the community. In this framework, not only the structural and non-structural elements damage but also the protracted structural dysfunction can contribute significantly to overall seismic damage and post-seismic crisis situations. Reduction of the residual and peak displacements and energy dissipation by replaceable elements are some effective aspects to pursue in order to enhance the resilience. Control systems able to adapt their response based on the nature of events, such as active or semi-active, can achieve the best results, but also require higher costs and their complexity jeopardizes their reliability; on the other hand, a passive control system is not able to adapt but its functioning is more reliable and characterized by lower costs. In this study it is proposed a strategy for the optimization of the dissipative capacity of a seismic resistant system obtained placing in parallel two different groups dissipative Re-Centering Devices, specifically designed to enhance the energy dissipation, one for the low and the other for the high intensity earthquakes. In this way the efficiency of the system in dissipating the seismic energy is kept less sensitive to the seismic intensity compared to the case of only one group of dissipative devices.

A Study on improvement for disaster resilience of the smart city - Mainly on the data analysis in Great East Japan Earthquake (스마트시티의 재해회복력 향상을 위한 고찰 - 동일본 대지진 데이터 분석을 중심으로)

  • Chang, Hye-Jung;Kim, Do-Nyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.373-387
    • /
    • 2016
  • The citizen is going to live on security for better life stably in all times, and, as for such human basic desire, it is to the base which is important about the durability and the development of the smart city. I defined needs and the priority about the disaster recovery of the community as a citizen through date analysis until I came back to the normal environment again after a smart city suffered the damage by the misfortune in the study. I was going to suggest a method to support inhabitants of the damage area that was the immediate, and was necessary for a base in such date analysis and recovery of the community. I considered the Great East Japan Earthquake in an example in 2011. I studied the smart city plan which could improve the resilience of the local citizen and community through data utilization.

Research on the educational management model for the interplay of structural damage in buildings and tunnels based on numerical solutions

  • Xiuzhi Wei;Zhen Ma;Jingtao Man;Seyyed Rohollah Taghaodi;H. Xiang
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • The effective management of damage in tunnels is crucial for ensuring their safety, longevity, and operational efficiency. In this paper, we propose an educational management model tailored specifically for addressing damage in tunnels, utilizing numerical solution techniques. By leveraging advanced computational methods, we aim to develop a comprehensive understanding of the factors contributing to tunnel damage and to establish proactive measures for mitigation and repair. The proposed model integrates principles of tunnel engineering, structural mechanics, and numerical analysis to facilitate a systematic approach to damage assessment, diagnosis, and management. Through the application of numerical solution techniques, such as finite element analysis, we demonstrate the efficacy of the proposed model in simulating various damage scenarios and predicting their impact on tunnel performance. Additionally, the educational component of the model provides valuable insights and training opportunities for tunnel management personnel, empowering them to make informed decisions and implement effective strategies for ensuring the structural integrity and safety of tunnel infrastructure. Overall, the proposed educational management model represents a significant advancement in tunnel management practices, offering a proactive and knowledge-driven approach to addressing damage and enhancing the resilience of tunnel systems.

Development of a bridge-specific fragility methodology to improve the seismic resilience of bridges

  • Dukes, Jazalyn;Mangalathu, Sujith;Padgett, Jamie E.;DesRoches, Reginald
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.253-261
    • /
    • 2018
  • This article details a bridge-specific fragility method developed to enhance the seismic design and resilience of bridges. Current seismic design processes provide guidance for the design of a bridge that will not collapse during a design hazard event. However, they do not provide performance information of the bridge at different hazard levels or due to design changes. Therefore, there is a need for a supplement to this design process that will provide statistical information on the performance of a bridge, beyond traditional emphases on collapse prevention. This article proposes a bridge-specific parameterized fragility method to enable efficient estimation of various levels of damage probability for alternative bridge design parameters. A multi-parameter demand model is developed to incorporate bridge design details directly in the fragility estimation. Monte Carlo simulation and Logistic regression are used to determine the fragility of the bridge or bridge component. The resulting parameterized fragility model offers a basis for a bridge-specific design tool to explore the influence of design parameter variation on the expected performance of a bridge. When used as part of the design process, these tools can help to transform a prescriptive approach into a more performance-based approach, efficiently providing probabilistic performance information about a new bridge design. An example of the method and resulting fragility estimation is presented.

Energy-factor-based damage-control evaluation of steel MRF systems with fuses

  • Ke, Ke;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • The primary objectives of this research are to investigate the energy factor response of steel moment resisting frame (MRF) systems equipped with fuses subject to ground motions and to develop an energy-based evaluation approach for evaluating the damage-control behavior of the system. First, the energy factor of steel MRF systems with fuses below the resilience threshold is derived utilizing the energy balance equation considering bilinear oscillators with significant post-yielding stiffness ratio, and the effect of structural nonlinearity on the energy factor is investigated by conducting a parametric study covering a wide range of parameters. A practical transformation approach is also proposed to associate the energy factor of steel MRF systems with fuses with classic design spectra based on elasto-plastic systems. Then, the energy balance is extended to structural systems, and an energy-based procedure for damage-control evaluation is proposed and a damage-control index is also derived. The approach is then applied to two types of steel MRF systems with fuses to explore the applicability for quantifying the damage-control behavior. The rationality of the proposed approach and the accuracy for identifying the damage-control behavior are demonstrated by nonlinear static analyses and incremental dynamic analyses utilizing prototype structures.

Damage analysis of three-leg jacket platform due to ship collision

  • Jeremy Gunawan;Jessica Rikanti Tawekal;Ricky Lukman Tawekal;Eko Charnius Ilman
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.385-399
    • /
    • 2023
  • A collision between a ship and an offshore platform may result in structural damage and closure; therefore, damage analysis is required to ensure the platform's integrity. This paper presents a damage assessment of a three-legged jacket platform subjected to ship collisions using the industrial finite element program Bentley SACS. This study considers two ships with displacements of 2,000 and 5,000 tons and forward speeds of 2 and 6.17 meters per second. Ship collision loads are applied as a simplified point load on the center of the platform's legs at inclinations of 1/7 and 1/8; diagonal bracing is also included. The jacket platform is modelled as beam elements, with the exception of the impacted jacket members, which are modelled as nonlinear shell elements with elasto-plastic material and constant isotropic hardening to provide realistic dented behavior due to ship collision load. The structural response is investigated, including kinetic energy transfer, stress distribution, and denting damage. The simulation results revealed that the difference in leg inclination has no effect on the level of localized denting damage. However, it was discovered that a leg with a greater inclination (1/8) resists structural displacement more effectively and absorbs less kinetic energy. In this instance, the three-legged platform collapses due to the absorption of 27.30 MJ of energy. These results provide crucial insights for enhancing offshore platform resilience and safety in high-traffic maritime regions, with implications for design and collision mitigation strategies.

Developing an Urban Planning Model for Climate Change Adaptation

  • Kim, Jong-Kon;Rhim, Joo-Ho;Lee, Sung-Hee
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.51-53
    • /
    • 2015
  • As abnormal climate phenomena occur more frequently due to climate change, damage which results from meteorological disaster increases accordingly and its scale and variety are becoming wider. This paper draws out planning and design elements and application techniques to build cities more adaptive to climate change from urban development cases in US and Europe. An urban model is suggested, that enables built environment to be more resilient to risks caused by climate change is applicable to urban development projects in practice.

  • PDF