DOI QR코드

DOI QR Code

Research on the educational management model for the interplay of structural damage in buildings and tunnels based on numerical solutions

  • Xiuzhi Wei (Organization Department (Personnel Department), Jining Polytechnic) ;
  • Zhen Ma (Department of Cultural Communication and Public Service Management, Jining Polytechnic) ;
  • Jingtao Man (Organization Department (Personnel Department), Jining Polytechnic) ;
  • Seyyed Rohollah Taghaodi (Department of industrial engineering, Kashan Branch, Islamic Azad university) ;
  • H. Xiang (Department of Engineering, University of Hong Kong)
  • Received : 2023.04.18
  • Accepted : 2024.03.08
  • Published : 2024.04.10

Abstract

The effective management of damage in tunnels is crucial for ensuring their safety, longevity, and operational efficiency. In this paper, we propose an educational management model tailored specifically for addressing damage in tunnels, utilizing numerical solution techniques. By leveraging advanced computational methods, we aim to develop a comprehensive understanding of the factors contributing to tunnel damage and to establish proactive measures for mitigation and repair. The proposed model integrates principles of tunnel engineering, structural mechanics, and numerical analysis to facilitate a systematic approach to damage assessment, diagnosis, and management. Through the application of numerical solution techniques, such as finite element analysis, we demonstrate the efficacy of the proposed model in simulating various damage scenarios and predicting their impact on tunnel performance. Additionally, the educational component of the model provides valuable insights and training opportunities for tunnel management personnel, empowering them to make informed decisions and implement effective strategies for ensuring the structural integrity and safety of tunnel infrastructure. Overall, the proposed educational management model represents a significant advancement in tunnel management practices, offering a proactive and knowledge-driven approach to addressing damage and enhancing the resilience of tunnel systems.

Keywords

Acknowledgement

ZJS2024ZD001 Research on Huang Yanpei's Thought System of Vocational Education and Modernization of Chinese style Vocational Education.

References

  1. Amoli, A., Kolahchi, R. and Bidgoli, M.R. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.
  2. Bakhshande Amnieh, H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  3. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144,788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  4. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  5. Hajmohammad, M.H., Sharif Zarei, M., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636217720373.
  6. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment", Eng. Comput., 35, 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  7. Hause, T. and Librescu, L. (2007), "Dynamic response of doubly-curved anisotropic sandwich panels impacted by blast loadings", Int. J. Solids Struct., 44, 6678-6700. https://doi.org/10.1016/j.ijsolstr.2007.03.006.
  8. Hong, S.K., Oh, D.W., Kong, S.K. and Lee, Y.J. (2020), "Investigation of divergence tunnel excavation according to horizontal offsets between tunnels", Geomech. Eng., 21(2), 111-122. https://doi.org/10.12989/gae.2020.21.2.111.
  9. Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci. Geomech., 348, 1165e86, https://doi.org/10.1016/S1365-1609(97)80069-X.
  10. Heidarzadeh, A., Kolahchi, R. and Bidgoli, M.R. (2018), "Concrete pipes reinforced with AL2O3 nanoparticles considering agglomeration: Magneto-thermo-mechanical stress analysis", Int. J. Civ. Eng., 16(3), 315-322. https://doi.org/10.1007/s40999-016-0130-2.
  11. Jassas, M.R., Rabani Bidgoli, M.R. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.
  12. Katariya, P.V. and Panda, S.K. (2019), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 35, 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.
  13. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. - A/Solids, 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  14. Kolahchi. R., Rabani Bidgoli. M.R., Beygipoor. G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.
  15. Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  16. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  17. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  18. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2021a), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., In press. https://doi.org/10.1177/10996362211020388.
  19. Kolahchi, R. and Kolahdouzan, F. (2021b), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  20. Kumar, A., Chakrabartim, A. and Bhargavam, P. (2013), "Vibration of laminated composites and sandwich shells based on higher order zigzag theory", Eng. Struct., 56, 880-888. https://doi.org/10.1016/j.engstruct.2013.06.014.
  21. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., In press, https://doi.org/10.1002/pc.26118.
  22. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115. https://doi.org/10.12989/cac.2020.37.1.099.
  23. Reddy, J.N. (2004), "Mechanics of laminated composite plates and shells", 2nd Ed., Washington, CRC press.
  24. Seo, Y.S., Jeong, W.B., Yoo, W.S. and Jeong, H.K. (2015), "Frequency response analysis of cylindrical shells conveying fluid using finite element method", J. Mech. Sci. Tech., 19, 625-633. https://doi.org/10.1007/BF02916184.
  25. Skob, Y.A., Ugryumov, M.L. and Granovskiy, E.A. (2020), "Numerical assessment of hydrogen explosion consequences in a mine tunnel", Int. J. Hydrog. Energ., In press. https://doi.org/10.1016/j.ijhydene.2020.09.067,
  26. Tiwari, R., Chakraborty, T. and Matsagar, V. (2020), "Analysis of curved tunnels in soil subjected to internal blast loading", Acta Geotech., 15, 509-528. https://doi.org/10.1007/s11440-018-0694-x.
  27. Tran, M.T., Nguyen, V.L., Pham, S.D. and Rungamornrat, J. (2020), "Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler-Pasternak foundation with different boundary conditions under thermal environment", Acta Mech., 231, 2545-2564. https://doi.org/10.1007/s00707-020-02658-y.
  28. Wu, K., Shao, Z., Hong, S. and Qin, S. (2020), "Analytical solutions for mechanical response of circular tunnels with double primary linings in squeezing grounds", Geomech. Eng., 22(6), 509-518. https://doi.org/10.12989/gae.2020.22.6.509.
  29. Zaid, M. and Rehan Sadique, M.R. (2020), "The response of rock tunnel when subjected to blast loading: Finite element analysis", Eng. Rep., In press. https://doi.org/10.1002/eng2.12293.