• Title/Summary/Keyword: damage fraction

Search Result 354, Processing Time 0.025 seconds

An Experimental Study of Radioprotective Effect of Ginseng Alkaloid Fraction on Cellular Damage (방사선 세포 손상에 대한 인삼 Alkaloid 분획의 보호 효과에 관한 실험적 연구)

  • Yoo, Seong-Yul;Cho, Chul-Koo;Kim, Mi-Sook;Yoo, Hyung-Jun;Kim, Seong-Ho;Kim, Tae-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.195-205
    • /
    • 1997
  • This paper is to assess the effect of Adaptagen as a radioprotector in which main component is alkaloid fraction of ginseng. Evaluation was made in vitro and in vivo study with NIGP(S) mouse by the measurement of regeneration of jejunal crypt cell and micronucleus assay to analyze radioprotective effect of ginseng alkaloid fraction in comparison with that of water fraction after whole body irradiation. The results were as follows, 1. The degree of radiation damage of mouse jejunal crypt cell was diminished in both of alkaloid and water fraction groups compared to control group but more in alkaloid fraction group than water fraction group. Regeneration of mouse jejunal crypt cell was higher both in alkaloid and water fraction groups than control group. 3. In vitro study, frequency of micronucleus was diminished in tendency for the treated groups than control group but statistically insignificant. 4. In vitro study, frequency of micronucleus was diminished in both alkaloid and water fraction groups compared to control group but more in alkaloid fraction group than water fraction group.

  • PDF

Antimicrobial activity and protective effect of Geranium thunbergii against oxidative DNA damage via antioxidant effect (현초의 항산화 활성에 의한 산화적 DNA 손상 보호효과 및 항균활성)

  • Kwon, Tae-Hyung;Lee, Su-Jin;Park, Jae-Ho;Kim, Taewan;Park, Jung-Ja;Park, Nyun-Ho
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.325-333
    • /
    • 2017
  • This study aimed to investigate the various biological activities of Geranium thunbergii such as antimicrobial activity and protective effect against oxidative damage. To evaluate its antioxidant and antimicrobial activities, we first performed methanol extraction; this methanol extract was further partitioned using various solvents. And then, its antioxidant activity was measured using various assays including total phenolic content and protection against oxidative DNA damage, and antimicrobial activities were examined using minimum inhibiting concentration (MIC) test, and paper disc method. In addition, high-performance liquid chromatography was performed to analyze the major chemical components of ethyl acetate fraction. The G. thunbergii fraction with ethyl acetate exhibited higher antioxidant and antimicrobial activities than the other fractions. The results showed that G. thunbergii ethyl acetate fraction at $50{\mu}g/mL$ had strong DPPH and ABTS radical scavenging activities of 80.88% and 80.12%, respectively. In addition, the ethyl acetate fraction protected DNA from the oxidative damage induced by ferrous ion and hydroxyl radicals and showed high antimicrobial activity with diameter of inhibition zones ranging from 13.33 to 15.67 mm. High-performance liquid chromatography analysis revealed the major phenolic compounds of G. thunbergii to be ellagic acid and gallic acid. These results suggest that G. thunbergii might protect DNA against oxidative stress induced by reactive oxygen species and can be utilized as a natural source of antioxidant and antimicrobial agent in the food industry.

Acer okamotoanum Inhibit the Hydrogen Peroxide-Induced Oxidative Stress in C6 Glial Cells

  • Choi, Soo Yeon;Kim, Ji Hyun;Quilantang, Norman G.;Lee, Sanghyun;Cho, Eun Ju
    • Natural Product Sciences
    • /
    • v.24 no.3
    • /
    • pp.148-154
    • /
    • 2018
  • Chronic oxidative stress due to the accumulation of reactive oxygen species (ROS) in neuronal cells ultimately leads to neurodegenerative diseases. The use of natural therapies for the prevention of ROS-induced cell damage and for the treatment of neurodegenerative disorders has shown promising results. In this study, we evaluated the neuroprotective effects of the ethyl acetate (EtOAc) fraction of A. okamotoanum against the hydrogen peroxide ($H_2O_2$)-induced oxidative stress in C6 glial cells. Results show that cell viability was decreased in cells incubated with $H_2O_2$, whereas the addition of EtOAc fraction treatments in such cells significantly increased viability. The EtOAc fraction showed the highest inhibitory activity against ROS production and it also decreased the expressions of inflammatory proteins including cyclooxygenase-2, inducible nitric oxide synthase and interleukin-$1{\beta}$. Furthermore, the EtOAc fraction inhibited apoptosis by regulating the protein expressions cleaved caspase -9, -3, poly ADP ribose polymerase, Bax and Bcl-2. Therefore, these results show that the EtOAc fraction of A. Okamotoanum exhibits neuroprotective effects against $H_2O_2$ induced oxidative damage by regulating the inflammatory reaction and apoptotic pathway.

Creep Analysis of Type 316LN Stainless Steel Using Reference Stress (참조응력을 이용한 316LN 스테인리스강의 크리프 해석)

  • Kim, Woo-Gon;Ryu, Woo-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2122-2129
    • /
    • 2002
  • Creep damage using a reference stress(RS) was analyzed for type 316LN stainless steel. The generalized K-R equation was reconstructed into the RS equation using a critical stress value $\sigma$. The RS equation was derived from the critical stress in failure time $t_f$ instead of material damage parameter $\omega$, which indicates the critical condition of collapse or approach to gross instability of materials during creep. For obtaining the reference stress, a series of creep tests and tensile tests were conducted with at 55$0^{\circ}C$ and $600^{\circ}C$. The stress-time data obtained from creep tests were applied to the RS equations to characterize the creep damage of type 316LN stainless steel. The value of creep constant r with stress levels was about 18 at 55$0^{\circ}C$ and 21 at $600^{\circ}C$. This value was almost similar with r = 24 in the K-R equation, which was obtained by using damage parameter $\omega$. Relationship plots of creep failure strain and life fraction $(t_f /t_r)$ were also obtained with different λ values. The RS equation was therefore more convenient than the generalized K-R equation, because the measuring process to quantify the damage parameter $\omega$ such as voids or micro cracks in crept materials was omitted. The RS method can be easily used by designers and plant operator as a creep design tool.

Antioxidant and Free Radical Scavenging Activity of Different Fractions from Hawthorn Fruit

  • Park, Jae-Hyo;Li, Chunmei;Hu, Weicheng;Wang, Myeong-Hyeon
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • Hawthorn fruit is a conventional medicine used in treating cardiovascular diseases. Its therapeutic effects may relate to its antioxidant compounds. In this study, we evaluated the antioxidant activity of $CH_2Cl_2$, EtOAc, n-butanol and water fractions from 70% methanolic hawthorn fruit extract by total phenolic and flavonoid contents, total antioxidant activity, DPPH free radical scavenging activity, superoxide radical scavenging activity, reducing power assay, lipid peroxidation inhibitory activity and protective effect against hydroxyl-radical-induced DNA damage. Results showed that the EtOAc fraction contained significantly greater antioxidant activities than other fractions, which suggests that the potent EtOAc fraction should be used for further studies to identify the antioxidant compounds.

Study on Formability Enhancement of Electromagnetic Forming using Gurson Plasticity Material Model (Gurson모델을 사용한 전자기성형의 성형성 개선에 대한 연구)

  • Kim, Jeong;Song, Woojin;Kang, Beomsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.98-104
    • /
    • 2013
  • The effect of the tool-sheet interaction on formability enhancement in electromagnetic forming is investigated using FEM. A free bulging and a conical forming die with 0.7mm AL1050 sheet are used to evaluate damage evolution based on Gurson-Tvergaard-Needleman plasticity material model. The impact between the tool and sheet results in complex stress states including compressive hydrostatic stresses, which leads to a suppression of void growth and restrain ascending void volume fraction of the sheet. Therefore, the damage suppression due to the tool-sheet interaction can be the main factor contributing to the increased formability in the electromagnetic forming process.

Antioxidant and Cytoprotective Activity of Castor-aralia (Kalopanax pictus) Leaves

  • Hu, Wei-Cheng;Heo, Seong-Il;Wang, Myeong-Hyeon
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1523-1527
    • /
    • 2009
  • The present study was to investigate the in vitro antioxidant potential of hot water extract and its fractions from dichloromethane ($CH_2Cl_2$), ethyl acetate (EtOAc), n-butanol (n-BuOH), and water ($H_2O$) of castor-aralia (Kalopanax pictus) leaves using different antioxidant tests. Among these crude extract and fractions, EtOAc fraction exhibited higher antioxidant potency than others in 1,1-diphenyl-2-pricylhydrazyl (DPPH) free radical scavenging, reducing power assay, and reactive oxygen species (ROS) scavenging activity. However, $CH_2Cl_2$ fraction showed higher hydroxyl radical scavenging and DNA damage protective activity. This work demonstrates the potential of castor-aralia leaves as antioxidant functional food ingredients.

Effect of Alkaloidal Fraction from Cynanchi Radix on Lipid Peroxidation (우피소근(牛皮消根)의 알칼로이드 분획이 과산화지질 생성에 미치는 영향)

  • Lee, Dong-Ung;Shin, Uk-Seob;Yi, Su-Jin;Huh, Keun
    • YAKHAK HOEJI
    • /
    • v.38 no.6
    • /
    • pp.786-790
    • /
    • 1994
  • The crude alkaloidal fraction of the root of Cynanchum caudatum Max.(Asclepiadaceae) was tested for the effects on the activities of free radical generating enzymes and the formation of lipid peroxide. Aldehyde oxidase was strongly inhibited to about 90% of the activity by treating 1.0 mg/ml of alkaloidal fraction, corresponding to competitive inhibition. Moreover, the formation of lipid peroxide which causes damage of cell membrane was reduced in proportion to the increasing alkaloid concentration. However, xanthine oxidase of which structure and function are similar to those of aldehyde oxidase was not inhibited by the alkaloidal fraction.

  • PDF

Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage (누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성)

  • 김동호;홍창우;이주형;이봉학
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.

Neuroprotective Effect of the Water-insoluble fraction of Root Barks of Dictamnus dasycarpus 70% Ethanolic Extract on Glutamate-Induced Oxidative Damage in Mouse Hippocampal HT22 Cells (백선피 70% 에탄올 추출물의 비수용성 분획물의 뇌세포 보호 효과)

  • Choi, Hyun-Gyu;Lee, Dong-Sung;Li, Bin;Jun, Ki-Yong;Jeong, Gil-Saeng;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • Oxidative stress or accumulation of reactive oxygen species (ROS) leads neuronal cellular death and dysfunction, and it contributes to neuronal degenerative disease such as Alzheimer's disease, Parkinson's disease and stroke. Glutamate is one of the major excitatory neurotransmitter in the central nervous system (CNS). Glutamate contributes to fast synaptic transmission, neuronal plasticity, outgrowth and survival, behavior, learning and memory. In spite of these physiological functions, high concentration of glutamate causes neuronal cell damage, acute insults and chronic neuronal neurodegenerative diseases. Heme oxygenase-1 (HO-1) enzyme plays an important role of cellular antioxidant system against oxidant injury. NNMBS020, the water-insoluble fraction of the 70% EtOH extract of root barks of Dictamnus dasycarpus, showed dominant neuroprotective effects on glutamate-induced neurotoxicity in mouse hippocampal HT22 cells by induced the expression of HO-1 and increased HO activity. In mouse hippocampal HT22 cells, NNMBS020 makes the nuclear accumulation of Nrf2 and stimulates extracellular signal-regulated kinase (ERK) pathway. The ERK MAPK pathway inhibitor significantly reduced NNMBS020-induced HO-1 expression, whereas the JNK and p38 inhibitors did not. In conclusion, the water-insoluble fraction of the 70% EtOH extract of root barks of D. dasycarpus (NNMBS020) significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2 and ERK pathway in mouse hippocampal HT22 cells.