• Title/Summary/Keyword: damage evolution model

Search Result 119, Processing Time 0.018 seconds

선박 및 해양구조물용 극저온 재료의 온도 및 변형률 속도 의존 통합 구성방정식 개발 (Development of Temperature and Strain-Rate Dependent Unified Constitutive Equation for Ships and Offshore Structures)

  • 박웅섭;김정현;전민성;이제명
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.200-206
    • /
    • 2011
  • The mechanical properties of the most widely used cryogenic materials, i.e. austenitic stainless steel (ASS), aluminum alloy and invar steel, strongly depend on temperatures and strain rates. These phenomena show very complicated non-linear behaviors and cannot be expressed by general constitutive equation. In this study, an unified constitutive equation was proposed to represent the effect of temperature and strain rate on the materials. The proposed constitutive equation has been based on Tomita/Iwamoto and Bodner/Partom model for the expression of 2nd hardening due to martensite phase transformation of ASS. To simulate ductile fracture, modified Bodner/Chan damage model was additionally applied to the model and the model validity was verified by comparison of experimental and simulation results.

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • 제30권4호
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

궤도 품질수준에 따른 레일 피로 손상과 자갈 침하 진전을 고려한 철도 궤도 보수량 및 수명주기비용 평가 (Evaluation of Maintenance Quantity and Life Cycle Costs of Railway Track Considering Evolution of Rail Fatigue Damage and Ballast Settlement According to Track Quality Level)

  • 최준혁;장승엽;유승원;김도엽;김형조
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권4호
    • /
    • pp.37-47
    • /
    • 2024
  • 이 연구에서는 철도 궤도의 수명주기비용(life cycle cost, LCC)를 보다 합리적으로 평가하기 위하여 실제 경부고속철도의 궤도 유지보수 데이터를 이용하여 열차 하중의 반복에 따른 레일의 피로 손상과 자갈 침하 진전을 고려한 궤도 보수량 추정 모델을 제시하여 기존 궤도 LCC 모델을 수정 보완하고 이 모델을 이용하여 궤도 품질수준에 따른 유지보수량과 수명주기비용을 분석하였다. 연구결과에 따르면 레일의 피로 손상 진전과 자갈 침하 진전을 고려한 궤도 보수량 추정모델을 적용한 결과 유지보수비를 실제 유지보수 비용에 가깝게 합리적으로 산정할 수 있음을 확인하였다. 궤도품질 영향계수는 레일 보수량 및 자갈다짐 보수량 그리고 결과적으로 유지보수비에도 상당한 영향을 미치고, 레일 보수량 보다 자갈다짐 보수량에 더 큰 영향을 미치는 것으로 나타났다. 또한 열차속도가 증가하면 레일 보수량과 자갈다짐 보수량이 증가하고, 궤도품질 영향계수가 클수록 열차속도에 따른 보수량의 증가율이 더 커지는 것으로 나타났다. 이에 따라 LCC 또한 궤도품질 영향계수가 클수록 열차속도가 커질수록 시간에 따른 증가속도가 빠르고, 유지보수비가 차지하는 비중이 증가하는 것으로 나타났다.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

피로누적손상을 이용한 직조 CFRP의 피로수명 예측 (Fatigue Life Prediction of CFRP using Fatigue Progressive Damage Model)

  • 장재욱;조제형;오동진;김명현
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.248-254
    • /
    • 2015
  • The strength and fatigue life of Satin and Twill-woven CF/epoxy composite(CFRP) have been investigated. Damage mechanism fatigue method has been used to assess fatigue damage accumulation. It is based on measured residual stiffness and residual strength of carbon-fiber reinforced plastic(CFRP) laminates under cyclic loading. Fatigue damage evolution in composite laminates and predict fatigue life of the laminates were simulated by finite element analysis(FEA) method. The stress analysis was carried out in MSC patran/Nastran. A modified Hashin's failure criterion di rmfjapplied to predict the failure of the experimental data of fatigue life but a Ye-delamination criterion was ignored because of 2D modeling. Almost linear stiffness and strength degradation were observed during most of the fatigue process. These stress distribution data were adopted in the simulation to simulate fatigue behavior and estimate life of the laminates. From the results, the predicted fatigue life is more conservatively estimated than the experimental results.

Dynamic fracture catastrophe model of concrete beam under static load

  • Chen, Zhonggou;Fu, Chuanqing;Ling, Yifeng;Jin, Xianyu
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.517-523
    • /
    • 2020
  • An experimental system on three point bending notched beams was established to study the fracture process of concrete. In this system, the acoustic emission (AE) was used to build the cumulative generation order (AGO) and dynamically track the process of microcrack evolution in concrete. A grey-cusp catastrophe model was built based on AE parameters. The results show that the concrete beams have significant catastrophe characteristic. The developed grey-cusp catastrophe model, based on AGO, can well describe the catastrophe characteristic of concrete fracture process. This study also provides a theoretical and technical support for the application of AE in concrete fracture prediction.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Modelling of Alkali-Silica Reaction Effects on Mechanical Property Changes of Concrete

  • Kim, Jung Joong;Fan, Tai;Reda Tah, Mahmoud M.;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • 제8권2호
    • /
    • pp.42-45
    • /
    • 2015
  • Alkali-silica reaction (ASR) is a chemical reaction in concrete that alkalis in cement react with reactive silica in aggregate in the presence of water. When ASR takes place, it produces gels that absorb water and expand. Swelling of ASR gels can damage concrete and cause cracking and volume expansion in concrete structure. In this paper, mechanical consequences of ASR on concrete are simulated by a finite element (FE) analysis. An FE model of concrete is built. The evolution of concrete mechanical properties subjected to ASR is achieved by FE analyses. The constitutive model of concrete is attained via the FE analysis. A case study is used to demonstrate the proposed method. The simulated results using the proposed model are in good agreement with the observations of concrete with ASR reported in the literature. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

강도저하모델을 이용한 다목적헬리콥터용 복합재로터깃 피로수명예측 (Prediction of Fatigue Life for Composite Rotor Blade of Multipurpose Helicopter Using Strength Degradation Model)

  • 권정호;서창원
    • Composites Research
    • /
    • 제14권2호
    • /
    • pp.50-59
    • /
    • 2001
  • 다목적헬리콥터용으로 설계된 복합재 무힌지 로터깃에 대하여 강도저하모델을 활용하여 비행모사 하중스펙트럼에 따라 피로파손 확률분포와 잔여강도 변화거동을 해석하여 피로수명을 예측하였다. 이때 작용하는 피로하중은 실제 헬리콥터 운용상태를 모사하는 무힌지 로터깃의 표준하중스펙트럼인 FELIX 데이터로부터 비행 대 비행 하중스펙트럼을 구성하였고 피로손상이 가장 극심하게 예상되는 깃뿌리 부근의 국부응력스펙트럼은 스킨과 스파의 적층구조해석을 수행함으로써 구하였다.

  • PDF