• Title/Summary/Keyword: damage evolution model

Search Result 119, Processing Time 0.024 seconds

Multiscale Modeling of Radiation Damage: Radiation Hardening of Pressure Vessel Steel

  • Kwon Junhyun;Kwon Sang Chul;Hong Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.229-236
    • /
    • 2004
  • Radiation hardening is a multiscale phenomenon involving various processes over a wide range of time and length. We present a multiscale model for estimating the amount of radiation hardening in pressure vessel steel in the environment of a light water reactor. The model comprises two main parts: molecular dynamics (MD) simulation and a point defect cluster (PDC) model. The MD simulation was used to investigate the primary damage caused by displacement cascades. The PDC model mathematically formulates interactions between point defects and their clusters, which explains the evolution of microstructures. We then used a dislocation barrier model to calculate the hardening due to the PDCs. The key input for this multiscale model is a neutron spectrum at the inner surface of reactor pressure vessel steel of the Younggwang Nuclear Power Plant No.5. A combined calculation from the MD simulation and the PDC model provides a convenient tool for estimating the amount of radiation hardening.

Fundamental thermodynamic concepts for the constitutive modeling of damaged concrete

  • Park, Tae-Hyo;Park, Jae-Min;An, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.648-651
    • /
    • 2004
  • Many damage models has been developed to express the degradation of materials. However, only minor damage model for concrete has been developed because of the heterogeneity of it unlike metals. To model the damaged behavior of concrete, this peculiarity as well as a load-induced anisotropic feature must be considered. In this paper, basic concepts of the thermodynamic theory is investigated to model the behavior of the damaged concrete in the phenomenological viewpoint. And the general constitutive relations and damage evolution equations are investigated too.

  • PDF

Contimuum Damage Model of Concrete using Hypothesis of Equivalent Elastic Energy (등가탄성에너지법에 의한 콘크리트의 연속체 손상모델)

  • 이기성;변근주;송하원
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.172-178
    • /
    • 1995
  • Concrete contains numerous microcracks at initially poured. The growth and propagation of nicrockacsk are believed tc finally incur the faiure of concrete. These processings are understood as a damage. Damage IS represented as a second-order tensor and crack is treated as a con tinuum phenomenon. In this paper, damage is characterized through the effective stress concept together with the hypothesis of elastic energy equivalence, and damage evolution law and constitutive equation of a damage model are derived by using the Helmholtz frte eriergy and the dissipation potential by means of the thermodynamic principles. The constitutive equation of the model includes the effects of elasticity, anisotropic damage and plasticity of concrete. There are two effective tangent stiffness tensors in this model : one is for elastic-darnage and the other for plastic damage. For the verification of the model, finite element analysis was performed for the analysis of concrete subjec:t to uniaxial and biaxial loading and the results obtained were compared with test results.

Approximate Yield Criterion for Voided Anisotropic Ductile Materials

  • Kim, Youngsuk;Sungyeun Won;Kim, Dogsoo;Hyunsung Son
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1349-1355
    • /
    • 2001
  • As most fractures of ductile materials in metal forming processes occurred due to the results of evolution of internal damage - void nucleation, growth and coalescence. In this paper, an approximate yield criterion for voided (porous) anisotropic ductile materials is developed. The proposed approximate yield function is based on Gurson's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion in order to consider the characteristic of anisotropic properties of matrix material. The associated flow rules are presented and the laws governing void growth with strain are derided. Using the proposed model void growth of an anisotropic sheet under biaxial tensile loading and its effect on sheet metal formability are investigated. The yield surface of voided anisotropic sheet and void growth with strain are predicted and compared with the experimental results.

  • PDF

Development of Temperature Dependent Damage Model for Evaluating Material Performance under Cryogenic Environment (극저온 재료 성능분석을 위한 온도의존 손상모델 개발)

  • Lee, Kyoung-Joon;Kim, Tae-Woo;Yoo, Jea-Sin;Yoo, Seong-Won;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.538-546
    • /
    • 2008
  • In this paper, the constitutive equation is developed to analyze the characteristics of strain-induced plasticity in the range of low temperature of 316 stainless steel. The practical usefulness of the developed equations is evaluated by the comparison between experimental and numerical results. For 316 stainless steel, constitutive equations, which represent the characteristics of nonlinear material behavior under the cryogenic temperature environment, are developed using the Bodner's plasticity model. In order to predict the material behaviour such as damage accumulation, Bodner-Chan's damage model is implemented to the developed constitutive equations. Based on the developed constitutive equations, 3-D finite element analysis program is developed, and verified using experimental results.

A damage model predicting moderate temperature and size effects on concrete in compression

  • Hassine, Wiem Ben;Loukil, Marwa;Limam, Oualid
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.321-327
    • /
    • 2019
  • Experimental isotherm compressive tests show that concrete behaviour is dependent on temperature. The aim of such tests is to reproduce how concrete will behave under environmental changes within a moderate range of temperature. In this paper, a novel constitutive elastic damage behaviour law is proposed based on a free energy with an apparent damage depending on temperature. The proposed constitutive behaviour leads to classical theory of thermo-elasticity at small strains. Fixed elastic mechanical characteristics and fixed evolution law of damage independent of temperature and the material volume element size are considered. This approach is applied to compressive tests. The model predicts compressive strength and secant modulus of elasticity decrease as temperature increases. A power scaling law is assumed for specific entropy as function of the specimen size which leads to a volume size effect on the stress-strain compressive behaviour. The proposed model reproduces theoretical and experimental results from literature for tempertaures ranging between $20^{\circ}C$ and $70^{\circ}C$. The effect of the difference in the coefficient of thermal expansion between the mortar and coarse aggregates is also considered which gives a better agreement with FIB recommendations. It is shown that this effect is of a second order in the considered moderate range of temperature.

Failure Criterion Including Brittle Damage (취성재의 결함을 고려한 파괴기준에 대한 연구)

  • Yoh, Eun-Gu;Lee, Yong-Shin
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.507-510
    • /
    • 2001
  • Brittle failure mechanism has been well known as growth of initial micro-damage, that causes macro crack and failure in the end. Several precise criteria are suggested recently, based on experiments values in a whole load range. Among them, Mohr-Coulomb's criterion is used widely these days, but it has a big error compared with the real failure behavior since it does not show reciprocal actions of stresses. In this study, a new brittle failure criterion is proposed, which includes the effects of brittle damage evolution by taking a brittle damage parameter specifically. Comparisons between the proposed model and the previous ones are also given.

  • PDF

A methodology to evaluate corroded RC structures using a probabilistic damage approach

  • Coelho, Karolinne O.;Leonel, Edson D.;Florez-Lopez, Julio
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Several aspects influence corrosive processes in reinforced concrete (RC) structures such as environmental conditions, structural geometry and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description of the corrosive phenomena. Besides, the definition of limit states in the reliability assessment requires a proper mechanical model. In this context, this study proposes a straightforward methodology for the mechanical-probabilistic modelling of RC structures subjected to reinforcements' corrosion. An improved damage approach is proposed to define the limit states for the probabilistic modelling, considering three main degradation phenomena: concrete cracking, rebar yielding and rebar corrosion caused either by chloride or carbonation mechanisms. The stochastic analysis is evaluated by the Monte Carlo simulation method due to the computational efficiency of the Lumped Damage Model for Corrosion (LDMC). The proposed mechanical-probabilistic methodology is implemented in a computational framework and applied to the analysis of a simply supported RC beam and a 2D RC frame. Curves illustrate the probability of failure evolution over a service life of 50 years. Moreover, the proposed model allows drawing the probability of failure map and then identifying the critical failure path for progressive collapse analysis. Collapse path changes caused by the corrosion phenomena are observed.

Finite Element Simulation of Hysteretic Behavior of Structural Stainless Steel under Cyclic Loading (반복하중을 받는 스테인리스강의 이력거동 해석모델 개발)

  • Jeon, Jun-Tai
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.186-197
    • /
    • 2019
  • Purpose: This study intends to develop a nonlinear cyclic plasticity damage model in the framework of finite element formulation, which is capable of taking large deformation effects into account, in order to accurately predict the hysteretic behavior of stainless steel structures. Method: The new cyclic constitutive equations that utilize the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanic model in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids yields nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. Results and Conclusion: The proposed nonlinear damage model has been verified by simulating uniaxial strain-controlled monotonic and cyclic loading tests, and successfully applied to a thin-walled stainless steel pipe subjected to constant and alternating strain-controlled cyclic loadings.

Study of Tube Expansion to Produce Hair-Pin Type Heat Exchanger Tubes using the Finite Element Method (유한요소법을 이용한 헤어핀 형 열 교환기의 튜브 확관에 대한 연구)

  • Hong, S.;Hyun, H.;Hwang, J.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.164-170
    • /
    • 2014
  • To predict the deformation and fracture during tube expansion using the finite element (FE) method, a material model is considered that incorporates the damage evolution due to the deformation. In the current study, a Rice-Tracey model was used as the damage model with inclusion of the hydrostatic stress term. Since OFHC Cu is not significantly affected by strain rate, a Hollomon flow stress model was used. The material parameters in each model were obtained by using an optimization method. The objective function was defined as the difference between the experimental measurements and FE simulation results. The parameters were determined by minimizing the objective function. To verify the validity of the FE modeling, cross-verification was conducted through a tube expansion test. The simulation results show reasonable agreement with the experiments. The design for a minimum diameter of expansion tube using the FE modeling was verified by a simplified tube expansion test and simulation results.