• Title/Summary/Keyword: d-ideal

Search Result 629, Processing Time 0.031 seconds

ON THE (n, d)th f-IDEALS

  • GUO, JIN;WU, TONGSUO
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.685-697
    • /
    • 2015
  • For a field K, a square-free monomial ideal I of K[$x_1$, . . ., $x_n$] is called an f-ideal, if both its facet complex and Stanley-Reisner complex have the same f-vector. Furthermore, for an f-ideal I, if all monomials in the minimal generating set G(I) have the same degree d, then I is called an $(n, d)^{th}$ f-ideal. In this paper, we prove the existence of $(n, d)^{th}$ f-ideal for $d{\geq}2$ and $n{\geq}d+2$, and we also give some algorithms to construct $(n, d)^{th}$ f-ideals.

p-ary Unified Sequences : p-ary Extended d-Form Sequences with Ideal Autocorrelation Property (p진 통합시퀀스 : 이상적인 자기상관특성을 갖는 p진 d-동차시퀀스)

  • No, Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.42-50
    • /
    • 2002
  • In this paper, for a prime number p, a construction method to genarate p-ary d-from sequences with ideal autocorrelation property is proposed and using the ternary sequences with ideal autocorrelation found by Helleseth, Kumar and Martinsen, ternary d-form sequences with ideal autocorrelation introduced. By combining the methods for generation the p-ary extended sequence (a special case of geometric sequences) and the p-ary d-from sequences, a construction method of p-ary unified (extended d-form) sequences which also have ideal autocorrelation property is proposed, which is very general class of p-ary sequences including the binary and nonbinary extended sequences and d-form seuqences. Form the ternary sequences with ideal autocorrelation by Helleseth, Kumar and Martinesen, ternary unified sequences with ideal autocorrelation property are also generated.

THE COHEN TYPE THEOREM FOR S-⁎ω-PRINCIPAL IDEAL DOMAINS

  • Lim, Jung Wook
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.571-575
    • /
    • 2018
  • Let D be an integral domain, ${\ast}$ a star-operation on D, and S a (not necessarily saturated) multiplicative subset of D. In this article, we prove the Cohen type theorem for $S-{\ast}_{\omega}$-principal ideal domains, which states that D is an $S-{\ast}_{\omega}$-principal ideal domain if and only if every nonzero prime ideal of D (disjoint from S) is $S-{\ast}_{\omega}$-principal.

INTEGRAL DOMAINS WITH FINITELY MANY STAR OPERATIONS OF FINITE TYPE

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.185-191
    • /
    • 2012
  • Let D be an integral domain and SF(D) be the set of star operations of finite type on D. We show that if ${\mid}SF(D){\mid}$ < ${\infty}$, then every maximal ideal of D is a $t$-ideal. We give an example of integrally closed quasi-local domains D in which the maximal ideal is divisorial (so a $t$-ideal) but ${\mid}SF(D){\mid}={\infty}$. We also study the integrally closed domains D with ${\mid}SF(D){\mid}{\leq}2$.

SOME RESULTS OF MONOMIAL IDEALS ON REGULAR SEQUENCES

  • Naghipour, Reza;Vosughian, Somayeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.711-720
    • /
    • 2021
  • Let R denote a commutative noetherian ring, and let 𝐱 := x1, …, xd be an R-regular sequence. Suppose that 𝖆 denotes a monomial ideal with respect to 𝐱. The first purpose of this article is to show that 𝖆 is irreducible if and only if 𝖆 is a generalized-parametric ideal. Next, it is shown that, for any integer n ≥ 1, (x1, …, xd)n = ⋂P(f), where the intersection (irredundant) is taken over all monomials f = xe11 ⋯ xedd such that deg(f) = n - 1 and P(f) := (xe1+11, ⋯, xed+1d). The second main result of this paper shows that if 𝖖 := (𝐱) is a prime ideal of R which is contained in the Jacobson radical of R and R is 𝖖-adically complete, then 𝖆 is a parameter ideal if and only if 𝖆 is a monomial irreducible ideal and Rad(𝖆) = 𝖖. In addition, if a is generated by monomials m1, …, mr, then Rad(𝖆), the radical of a, is also monomial and Rad(𝖆) = (ω1, …, ωr), where ωi = rad(mi) for all i = 1, …, r.

On *w-Finiteness Conditions

  • Jung Wook Lim
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.571-575
    • /
    • 2023
  • Let D be an integral domain and let * be a star-operation on D. In this article, we give new characterizations of *w-Noetherian domains and *w-principal ideal domains. More precisely, we show that D is a *w-Noetherian domain (resp., *w-principal ideal domain) if and only if every *w-countable type ideal of D is of *w-finite type (resp., principal).

IDEAL THEORY OF d-ALGEBRAS BASED ON $\mathcal{N}$-STRUCTURES

  • Ahn, Sun-Shin;Han, Gyeong-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1489-1500
    • /
    • 2011
  • The notions of $\mathcal{N}$-subalgebra, (positive implicative) $\mathcal{N}$-ideals of d-algebras are introduced, and related properties are investigated. Characterizations of an $\mathcal{N}$-subalgebra and a (positive implicative) $\mathcal{N}$-ideals of d-algebras are given. Relations between an $\mathcal{N}$-subalgebra, an $\mathcal{N}$-ideal and a positive implicative N-ideal of d-algebras are discussed.

Structural reliability estimation based on quasi ideal importance sampling simulation

  • Yonezawa, Masaaki;Okuda, Shoya;Kobayashi, Hiroaki
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2009
  • A quasi ideal importance sampling simulation method combined in the conditional expectation is proposed for the structural reliability estimation. The quasi ideal importance sampling joint probability density function (p.d.f.) is so composed on the basis of the ideal importance sampling concept as to be proportional to the conditional failure probability multiplied by the p.d.f. of the sampling variables. The respective marginal p.d.f.s of the ideal importance sampling joint p.d.f. are determined numerically by the simulations and partly by the piecewise integrations. The quasi ideal importance sampling simulations combined in the conditional expectation are executed to estimate the failure probabilities of structures with multiple failure surfaces and it is shown that the proposed method gives accurate estimations efficiently.

RINGS IN WHICH EVERY IDEAL CONTAINED IN THE SET OF ZERO-DIVISORS IS A D-IDEAL

  • Anebri, Adam;Mahdou, Najib;Mimouni, Abdeslam
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.45-56
    • /
    • 2022
  • In this paper, we introduce and study the class of rings in which every ideal consisting entirely of zero divisors is a d-ideal, considered as a generalization of strongly duo rings. Some results including the characterization of AA-rings are given in the first section. Further, we examine the stability of these rings in localization and study the possible transfer to direct product and trivial ring extension. In addition, we define the class of dE-ideals which allows us to characterize von Neumann regular rings.

RINGS IN WHICH SUMS OF d-IDEALS ARE d-IDEALS

  • Dube, Themba
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.539-558
    • /
    • 2019
  • An ideal of a commutative ring is called a d-ideal if it contains the annihilator of the annihilator of each of its elements. Denote by DId(A) the lattice of d-ideals of a ring A. We prove that, as in the case of f-rings, DId(A) is an algebraic frame. Call a ring homomorphism "compatible" if it maps equally annihilated elements in its domain to equally annihilated elements in the codomain. Denote by $SdRng_c$ the category whose objects are rings in which the sum of two d-ideals is a d-ideal, and whose morphisms are compatible ring homomorphisms. We show that $DId:\;SdRng_c{\rightarrow}CohFrm$ is a functor (CohFrm is the category of coherent frames with coherent maps), and we construct a natural transformation $RId{\rightarrow}DId$, in a most natural way, where RId is the functor that sends a ring to its frame of radical ideals. We prove that a ring A is a Baer ring if and only if it belongs to the category $SdRng_c$ and DId(A) is isomorphic to the frame of ideals of the Boolean algebra of idempotents of A. We end by showing that the category $SdRng_c$ has finite products.