• Title/Summary/Keyword: cyclodextrin glucanotransferase(CGTase)

Search Result 80, Processing Time 0.026 seconds

Encapsulation of Whole Cell CGTase from Concentrated Broth Solution

  • Park, Joong-Kon;Sohn, Joon-Hyuk;Park, Hyung-Woo;Lee, Yong-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.67-71
    • /
    • 2001
  • Most of the Cyclodextrin glucanotransferase (Gtases) which have been produced from B. subtilis were found to be excreted from the cells during cultivation. Immobilized whole cell CGTase from B. subtilis was prepared by encapsulating the broth solution which had been concentrated ten times with a rotary vacuum evaporator. Cyclization activity of CGTase was reduced by about 10% during the concentrating process, however, its transglycosylation activity, to convert xylitol to glucosyl-xylitol, using dextrin as glucosyl donor, increased by a factor of 3 or 5.

  • PDF

Enzymatic Synthesis of Maltol-$\alpha$-Glucoside and Ethyl Maltol-$\alpha$-Glucoside (Maltol-$\alpha$-Glucoside 및 Ethyl Maltol-$\alpha$-Glucoside의 효소적 합성)

  • 김삼곤;김근수;김영회
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.2
    • /
    • pp.94-100
    • /
    • 2002
  • Cyclodextrin glucanotransferase from Bacillus stearothemophilus and Bacillus macerans synthesized maltol and ethyl maltol monoglucoside, with a series of its maltooligo-glucosides by transglycosylation with dextrin as a donor, and maltol or ethyl maltol as an acceptor. The monoglucoside formed from reaction mixture of maltol or ethyl maltol by the successive actions of Bacillus stearothemophilus cyclodextrin glucanotransferase and Rhizopus glucoamylase was isolated by Diaion HP-20 column and silica gel column chromatography. The structure of the isolated monoglucoside was identified as maltol-$\alpha$-D-glucoside and ethyl maltol-$\alpha$-D-glucoside, respectively, by FAB-MS, UV, $^1$H-NMR, $^{13}$ C-NMR spectra and products by hydrolysis with acid, $\alpha$ - and $\beta$ -glucosidases.

Kinetic Modiling of Cyclodextrin forming Reactionin a Heterogeneous Enzyme Reaction System using Swollen Extrusion Starch (팽윤 Extrusion 전분을 기질로 한 불균일상 효소 반응계에서 Cyclodextrin 생성반응의 수치적 해석)

  • 조명진;박동찬;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.425-431
    • /
    • 1995
  • A kinetic model of the cyclodextrin formation in a heterogeneous enzyme reaction system using swollen extrusion starch as substrate was derived emphasing the structural features of extrusion starch. The degree of gelatinization, the ratio of accessible and inaccessible portion of extrusion starch, adsorption of CGTase on swollen starch, the structural transformation during reaction, and product inhibition caused by produced CDs were considered in deriving kinetic model. Various kinetic constants were also evaluated. The derived kinetic equation was numerically simulated, which result showed that the derived kinetic equations can be used to predict the experimental data reasonably well under the various experimental conditions. Kinetic model can be utilized for the optimization of enzyme reactor and the process development for CD production from swollen extrusion starch.

  • PDF

Enzymatic Synthesis of Vanillin-a -Glucoside and Ethyl Vanillin-a -Glucoside (효소적 방법에 의한 Vanillin-$\alpha$ -Glucoside 및 Ethyl Vanillin-$\alpha$ -Glucoside의 합성)

  • 김삼곤;김근수;나도영;김영회
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.25 no.2
    • /
    • pp.120-127
    • /
    • 2003
  • Cyclodextrin glucanotransferase (CGTase) from Bacillus stearothermophilus synthesized vanillin and ethyl vanillin monoglucoside, with a series of its maltooligoglucosides by transglycosylation with dextrin as a donor, and vanillin or ethyl vanillin as an acceptor. The monoglucoside formed from reaction mixture of vanillin or ethyl vanillin by the successive actions of CGTase and Rhizopus glucoamylase was isolated by extraction with n-butanol saturated with water and silica gel column chromatography. The structure of the isolated monoglucoside was identified as vanillin- $\alpha$ -D-glucoside and ethyl vanillin- $\alpha$ -D-glucoside, respectively, by FAB-MS, UV, IR, 1H-NMR, 13C-NMR spectra and products by hydrolysis with acid, $\alpha$ - and $\beta$ -glucosidases.

Production of Glucosyl-xylitol Using Encapsulated Whole Cell CGTase (캡슐 고정화 전세포 CGTase를 이용한 Glucosyl-xylitol 생산)

  • 박중곤;박형우;이용현
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • We tried to prepare encapsulated whole cell cyclodextrin glucanotransferase(CGTase) in order to produce glycosyl-xylitol using xylitol as glucosyl acceptor. The organic nitrogen source was more effective for the production of CGTase from Bacillus macerans IFO 3490 than the inorganic one. Most of the CGTase which had been produced during cultivation was excreted to the growth medium. B. macerans cells inocculated in the capsule failed to grow to the high cell density. Adsorbents such as activated charcoal, Sephadex and Amberite resins could not adsorb efficiently the CGTase from the broth solution. We obtained successfully the encapsulated whole cell CGTase by immobilizing the concentrated broth solution in the calcium alginate capsules. The encapsulated whole cell CGTase carried out the transglycosylation reaction which converts xylitol into glucosyl-xylitol using dextrin as glucosyl donor.

  • PDF

Identification of L-Ascorbic Acid 2-Ο-$\alpha$-Glucoside, a Stable Form of Ascorbic Acid, in Kimchi

  • JUN, HONG-KI;KYUNG-MI BAE;YOUNG-HEE KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.710-713
    • /
    • 1998
  • A material with the same high performance liquid chromatography (HPLC) retention profile as authentic ascorbic acid 2-Ο-$\alpha$-glucoside (AA-2G) was detected in kimchi. This material was identified as AA-2G by testing its susceptibility to $\alpha$-glucosidase hydrolysis, the HPLC profile, and through the elementary analysis. Among several strains of bacteria isolated from fermented kimchi, four strains could produce cydodextrin glucanotransferase (CGTase) which catalyzes the transglucosylation reaction of ascorbic acid. By using starch as the glycosyl donor, AA-2G was produced as the major product through this reaction.

  • PDF

Novel Suspension-Phase Enzyme Reaction System Using Insoluble Extrusion Starch as Glycosyl Donor for Intermolecular Transglycosylation of L-Ascorbic Acid

  • Kim, Tae-Kwon;Jung, Se-Wook;Go, Young-Hoon;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1678-1683
    • /
    • 2006
  • A novel suspension-phase enzyme reaction system for the intermolecular transglycosylation of L-ascorbic acid into 2-O-${\alpha}$-D-glucopyranosyl L-ascorbic acid supplementing extrusion starch as the glycosyl donor was developed using cyclodextrin glucanotransferase from Thermoanaerobacter sp. A high conversion yield compared to the conventional soluble-phase enzyme reaction system using cyclodextrins and soluble starch was achieved. The optimal reaction conditions were 2,000 units of cycIodextrin glucanotransferase, 20 g/l of L-ascorbic acid, and 50 g/l of extrusion starch at $50^{\circ}C$ for 24 h. The new suspension-phase enzyme reaction system also exhibited several distinct advantages other than a high conversion yield, including a lower accumulation of oligosaccharides and easily separable residual extrusion starch by centrifugation or filtration in the reaction mixture, which will facilitate the purification of 2-O-${\alpha}$-D-glucopyranosyl L-ascorbic acid. The new suspension-phase enzyme reaction system seems to be potentially applicable as the industrial process for the production of thermally and oxidatively stable 2-O-${\alpha}$-D-glucopyranosyl L-ascorbic acid.

Expression of the Bacillus stearothermophilus NO2 CGTase gene in Saccharomyces cerevisiae (Saccharomyces cerevisiae 내에서 Bacillus stearothermophilus NO2 CGTnse 유전자의 발현)

  • 유동주;박현이;전숭종;권현주;남수완;김병우
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.206-209
    • /
    • 2002
  • For the expression of CGTase gene(cgtS) kom Bacillus stearothemophilus NO2 in Saccharomyces cerevisiae, cgtS gene was subcloned into the Eschepichia coll-yeast shuttle vector, pVT103-U. The constructed plasmid, pVT-CGTS was introduced to 5. cemi-siae 2805 cell, and then the cgtS gene under the control of adhl promoter was successfully expressed in the yeast transformant and 87% of the total activity was detected into the fermentation medium. Therefore, the signal peptide of B. stearothemephilus NO2 CeTase showed high secretion efficiency in 5. cerevisiae. Optimal conditions of the recombinant yeast cell f3r expression of CGTase was achieved, when 5. cerevisiae 2805/pv7-CGTS was cultivated on YP medium at 2% dextrose, pH 5.5,$30^{\circ}C$ and the expression level of CGTase was 0.624units/mL for 48 h culture.

Purification and Characterization of Cycloinulooligosaccharide Fructanotransferase from Bacillus macerans CFC1

  • Kim, Hwa-Young;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.251-257
    • /
    • 1998
  • Cycloinulooligosaccharide fructanotransferase (CFTase) which produces cyclofructan from inulin was purified 332-fold from a culture broth of Bacillus macerans CFCl. The molecular mass of the CFTase was estimated to be 110 kDa by SDS-polyacrylamide gel electrophoresis and gel filtration, indicating that the enzyme has a monomer structure. The maximal level of enzyme activity was observed at pH 7.5 and $45^{\circ}C$. The enzyme was stable in the pH range 6.0 to 9.5, and at temperatures up to $45^{\circ}C$ for 1 h. The enzyme activity was completely inhibited in the presence of 0.5 mM $Ag^+\;or\;Cu^2+$ ion. None of sucrose (GF), l-kestose (GF2), or nystose (GF3) were found to be substrates for the CFTase, but inulooligosaccharides larger than nystose were attacked by the enzyme. The CFTase catalyzes not only the cyclization as the major reaction, but also disproportionation and coupling reactions involving intermolecular transfructosylation in the same manner as cyclodextrin glucanotransferase (CGTase) (EC 2.4.1.19).

  • PDF

Formation of A L-Ascorbic Acid 2-o-$\alpha$-glucoside during Kimchi Fermentation

  • Jun, Hong-Ki;Bae, Kyung-Mi;Kim, Young-Hee;Cheigh, Hong-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.225-229
    • /
    • 1998
  • Formation of a L-Ascorbic Acid 2-O-$\alpha$-glucoside(AA-2G) is a chemically stable dervative of asocrbate that shows a vitamin C acitivity in vitro as well as in vivo. We studied whether ascorbic acid(AA) and AA-2G are formed in baechu kimchi during fermentation at 4 $^{\circ}C$ or 18$^{\circ}C$. To determine the formation of AA and AA-2G during fermentation of kimchi, wheat flour (as a carbhydrate source) added baechu kimchi (WBK) and control baechu kimchi(CBK) were prepared and fermented at 4 $^{\circ}C$ or 18 $^{\circ}C$. A substance like AA-2G was detected by HPLC from WBK fermented at 18 $^{\circ}C$ for 26 days in fall season and confirmed later to be the AA-2G showing distinctive characteristics of heat stability and resistance to ascrobate oxidase catalase. However, none of the kimchi formed AA-2G when the kimchi were fermented under a different temperature condition such as 4 $^{\circ}C$ instead of 18 $^{\circ}C$ or a different season such as summer instead of fall even if they were fermented at 18 $^{\circ}C$. The pH of kimchi was decreased rapidly during the first 3 days. and then decreased slowly after 4 days when the kimchi were fermented at 18 $^{\circ}C$. However, there were slight changes of pH in both CBK and WBK feremented at 4$^{\circ}C$ for 30 $^{\circ}C$ days. Therefore, the AA-2G -forming activity in kimchi seems to be correlated with the formentation temperature, the microorganisms involved in kimchi fermentation and a suitable glycosyl donor for AA as provided by wheat flour in this study.

  • PDF