• Title/Summary/Keyword: cyclin-dependent kinase inhibitor

Search Result 128, Processing Time 0.026 seconds

Anti-proliferative Effects of Bee Venom through Induction of Bax and Cdk Inhibitor p21WAF1/CIP1 in Human Lung Carcinoma Cells (Bax 및 Cdk inhibitor p21WAF1/CIP1 발현 증가에 의한 bee venom의 A549 인체폐암세포 성장억제)

  • Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.167-173
    • /
    • 2005
  • To investigate the possible molecular mechanism (s) of bee venom as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Bee venom treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Bee venom down-regulated the levels of anti-apoptotic genes such as Bcl-2 and Bcl-XS/L, however, the levels of Bax, a pro-apoptotic gene, were up-regulated. Bee venom treatment induced not only tumor suppressor p53 but also cyclin-dependent kinase inhibitor p21WAF1/CIP1 expression in a dose-dependent manner. Furthermore, bee venom treatment induced the down-regulation of telomerase reverse transcriptase mRNA and telomeric repeat binding factor expression of A549 cells, however, the levels of telomerase-associated protein-1 and c-myc were not affected. Taken together, these findings suggest that bee venom-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and bee venom may have therapeutic potential in human lung cancer.

Inhibition of CDK4 activity by 7-chloro-4-nitro-benzo[1,2,5]oxadiazole 1-oxide (7-Chloro-4-nitro-benzo[1,2,5]oxadliazole 1-oxide의 CDK4 활성저해)

  • Jeon Yong-Jin;Ko Jong Hee;Yeon Seung Woo;Kim Tae-Yong
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • The activation of cyclin dependent kinase 4 (CDK4) is found in more than half of all human cancers. Therefore CDK4 is an attractive target for the development of a novel anticancer agent. For mass screening of CDK4 inhibitor, we set up in vitro kinase assay for CDK4 activity using a cyclin D1-CDK4 fusion protein, which is constitutively active and exhibits enhanced stability. From the screening of representative compound library of Korea Chemical Bank, we found that 7-chloro-4-nitro-benzo[1,2,5]oxadiazole 1-oxide (FBP-1248) selectively inhibited CDK4 activity in vitro by ATP competitive manner. This compound prevented the phosphorylation of retinoblatsoma tumor suppressor protein, Rb, and inhibited cell growth through cell cycle arrest. In summary, we developed an efficient assay system for CDK4 activity in vitro and identified the CDK4 inhibitory compound, FBP-1248.

Induction of the Growth Inhibition and Apoptosis by Beevenom in Human Breast Carcinoma MCF-7 Cells (봉독약침액(蜂毒藥鍼液)에 의한 인체유방암세포(人體乳房癌細胞)의 성장억제(成長抑制) 및 세포사(細胞死)에 관한 연구(硏究))

  • Yeo, Sung-won;Seo, Jung-chul;Choi, Yung-hyun;Jang, Kyung-jeon
    • Journal of Acupuncture Research
    • /
    • v.20 no.3
    • /
    • pp.45-62
    • /
    • 2003
  • Objective : To examine the effects of Beevenom on the cell proliferation of human breast carcinoma cell line MCF-7, we performed various experiments such as does-dependent effect of Beevenom on cell proliferation and viability, morphological changes, and alterations of apoptosis/cell cycle-regulatory gene products. Methods : Beevenom induced cell viability and proliferation of MCF-7 cells in a concentration-dependent manner. The anti-proliferative effect by Beevenom treatment in MCF-7 cells was associated with morphological changes such as membrance shrinking and cell rounding up. Results : Beevenom induced apoptotic cell death in a concentration-dependent manager, which was associated with degradation of ${\beta}$-catenin, an apoptotic target protein. Beevenom induced the Bax expressions, a pro-apoptotic gene, both in protein and mRNA levels, however, the levels of Bcl-$X_{S/L}$ expression, an anti-apoptotic gene, were down-regulated in Beevenom-treated cells. Western blot analysis and RT-PCT data revealed that the levels of cyclin of B1 protein and cyclin E mRNA were reduced by Beevenom treatment in MCF-7 cells, respectively, where as the expression of tumor suppressor p53 and cyclin dependent kinase inhibitor p21 mRNA were markedly increased in a concentration-dependent fashion. Conclusions : Taken together, these findings suggest that Beevenom induced inhibition of human breast cancer cell proliferation is associated with the induction of apoptotic cell death and Beevenom may have therapeutic potential in human breast cancer.

  • PDF

Anti-proliferative Effects of the Isothiocyanate Sulforaphane on the Growth of Human Cervical Carcinoma HeLa Cells (Sulforaphane에 의한 HeLa 인체자궁경부함세포의 증식 억제 기전 연구)

  • Park Soung Young;Bae Song-Ja;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.397-405
    • /
    • 2005
  • Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human cancer cells, however its molecular mechanisms are poorly understood. In the present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human cervical carcinoma HeLa cells. Treatment of HeLa cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells (9.83 fold of control). This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of cyclin A and cyclin-dependent kinase (Cdk)4 protein and concomitant induction of Cdc2, Cdk inhibitor p16 and p21. However, sulforaphane did not affect the levels of cyelooxygenases and telomere-regulatory gene products. Although further studies are needed, the present work suggests that sulforaphane may be a potential chemoprevetive/ chemotherapeutic agent for the treatment of human cancer cells.

Heme Oxygenase-l Induced by Aprotinin Inhibits Vascular Smooth Muscle Cell Proliferation Through Cell Cycle Arrest in Hypertensive Rats

  • Choi, Hyoung-Chul;Lee, Kwang-Youn;Lee, Dong-Hyup;Kang, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.309-313
    • /
    • 2009
  • Spontaneous hypertensive rats (SHR) are an established model of genetic hypertension. Vascular smooth muscle cells (VSMC) from SHR proliferate faster than those of control rats (Wistar-Kyoto rats; WKY). We tested the hypothesis that induction of heme oxygenase (HO)-1 induced by aprotinin inhibits VSMC proliferation through cell cycle arrest in hypertensive rats. Aprotinin treatment inhibited VSMC proliferation in SHR more than in normotensive rats. These inhibitory effects were associated with cell cycle arrest in the G1 phase. Tin protoporphyrin IX (SnPPIX) reversed the anti-proliferative effect of aprotinin in VSMC from SHR. The level of cyclin D was higher in VSMC of SHR than those of WKY. Aprotinin treatment downregulated the cell cycle regulator, cyclin D, but upregulated the cyclin-dependent kinase inhibitor, p21, in VSMC of SHR. Aprotinin induced HO-1 in VSMC of SHR, but not in those of control rats. Furthermore, aprotinin-induced HO-1 inhibited VSMC proliferation of SHR. Consistently, VSMC proliferation in SHR was significantly inhibited by transfection with the HO-1 gene. These results indicate that induction of HO-1 by aprotinin inhibits VSMC proliferation through cell cycle arrest in hypertensive rats.

Ankyrin Repeat-Rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Regulates Neuroblastoma Cell Proliferation through p21

  • Jung, Heekyung;Shin, Joo-Hyun;Park, Young-Seok;Chang, Mi-Sook
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.881-887
    • /
    • 2014
  • Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the $G_1$ phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the $G_1$ phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.

Anticancer effects of D-pinitol in human oral squamous carcinoma cells

  • Shin, Hyun-Chul;Bang, Tea-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.152-161
    • /
    • 2020
  • D-pinitol is an analog of 3-methoxy-D-chiro-inositol found in beans and plants. D-pinitol has anti-inflammatory, antidiabetic, and anticancer effects. Additionally, D-pinitol induces apoptosis and inhibits metastasis in breast and prostate cancers. However, to date, no study has investigated the anticancer effects of D-pinitol in oral cancer. Therefore, in this study, whether the anticancer effects of D-pinitol induce apoptosis, inhibit the epithelial-to-mesenchymal transition (EMT), and arrest cell cycle was investigated in squamous epithelial cells. D-pinitol decreased the survival and cell proliferation rates of CAL-27 and Ca9-22 oral squamous carcinoma cells in a concentration- and time-dependent manner. Evidence of apoptosis, including nuclear condensation, poly (ADP-ribose) polymerase, and caspase-3 fragmentation, was also observed. D-pinitol inhibited the migration and invasion of both cell lines. In terms of EMT-related proteins, E-cadherin was increased, whereas N-cadherin, Snail, and Slug were decreased. D-pinitol also decreased the expression of cyclin D1, a protein involved in the cell cycle, but increased the expression of p21, a cyclin-dependent kinase inhibitor. Hence, D-pinitol induces apoptosis and cell cycle arrest in CAL-27 and Ca9-22 cells, demonstrating an anticancer effect by decreasing the EMT.

Effect of Sarcodon aspratus Extract on Expression of Cell Cycle-Associated Proteins in HepG2 Cells (HepG2세포에서 향버섯 추출물이 세포주기 조절단백질에 미치는 영향)

  • 배준태;장종선;이갑랑
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.2
    • /
    • pp.329-332
    • /
    • 2002
  • We investigated the effect of Sarcodon aspratus extract on expression of cell cycle regulators. Methanol extract of Sarcodon aspratus showed a growth suppression on HepG2. As shown by western blot analysis, the expressions of cyclin A and Dl known as cell cycle regulators were decreased after treatment of Sarcodon aspratus extract. On the other hand, the expression of cyclin Bl was increased in the presence of Sarcodon aspratus extract. Furthermore, the expression of p53, a tumor supressor gene, and p27, a cell cycle dependent protein kinase inhibitor, were increased, whereas the expression of PCNA was decreased. In conclusion, our study suggests that growth inhibitory effect of Sardodon aspratus methanol extract on HepG2 is induced by cell cycle arrest in the Gl phase caused by decrease in cyclin A, Dl expressions and increases in p53, p27 expression.

Oligosaccharide-Linked Acyl Carrier Protein, a Novel Transmethylase Inhibitor, from Porcine Liver Inhibits Cell Growth

  • Seo, Dong-Wan;Kim, Yong-Kee;Cho, Eun-Jung;Han, Jeung-Whan;Lee, Hoi-Young;Hong, Sungyoul;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.463-468
    • /
    • 2002
  • We have previously reported on the identification of the endogenous transmethylation inhibitor oligosaccharide-linked acyl carrier protein (O-ACP), In this study, the role of the transmethylation reaction on cell cycle progression was evaluated using various transmethylase inhibitors, including O-ACP. O-ACP significantly inhibited the growth of various cancer cell lines, including NIH3T3, ras-transformed NIH3T3, MDA-MB-231, HT-1376, and AGS. In addition, exposure of ras-transformed NIH3T3 to O-ACP caused cell cycle arrest at the $G_0/G_1$ phase, which led to a decrease in cells at the S phase, as determined by flow cytometry. In contrast, transmethylase inhibitors did not affect the expression of $p21^{WAF1/Cip1}$, a well known inhibitor of cyclin dependent kinase, indicating that the cell cycle arrest by transmethylase inhibitors might be mediated by a $p21^{WAF1/Cip1}$-independent mechanism. Therefore, O-ACP, a novel transmethylase inhibitor, could be a useful tool for elucidating the novel role of methylation in cell proliferation and cell cycle progression.

G0/G1 Cell Cycle Arrest and Activation of Caspases in Honokiol-mediated Growth Inhibition of Human Gastric Cancer Cells

  • Kang, You-Jin;Chung, Hwa-Jin;Min, Hye-Young;Song, Ja-Young;Park, Hyen-Joo;Youn, Ui-Joung;Bae, Ki-Hwan;Kim, Yeong-Shik;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has been shown to have the anti-angiogenic, anti-invasive and cancer chemopreventive activities, but the molecular mechanism of actions has not been fully elucidated yet. In the present study, we investigated the effect of honokiol on the growth inhibitory activity in cultured SNU-638 human gastric cancer cells. We found that honokiol exerted potent antiproliferative activity against SNU-638 cells. Honokiol also arrested the cell cycle progression at the G0/G1 phase and induced the apoptotic cell death in a concentration-dependent manner. The cell cycle arrest was well correlated with the downregulation of Rb, cyclin D1, cyclin A, cyclin E, and CDK4 expression, and the induction of cyclin-dependent kinase inhibitor p27. The increase of sub-G1 peak by honokiol was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, the cleavage of poly(ADPribose) polymerase, and the sequential activation of caspase cascade. These findings suggest the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of honokiol in human gastric cancer cell.