DOI QR코드

DOI QR Code

Anti-proliferative Effects of the Isothiocyanate Sulforaphane on the Growth of Human Cervical Carcinoma HeLa Cells

Sulforaphane에 의한 HeLa 인체자궁경부함세포의 증식 억제 기전 연구

  • Park Soung Young (Department of Food and Nutrition, Silla University and Marine Biotechnology Center for Bio-Functional Material Industries) ;
  • Bae Song-Ja (Department of Food and Nutrition, Silla University and Marine Biotechnology Center for Bio-Functional Material Industries) ;
  • Choi Yung Hyun (Department of Biochemistry, Dongeui University Oriental Medicine and Department of Biomaterial Control, Dongeui University Graduate School)
  • 박성영 (신라대학교 자연과학대학 식품영양학과 및 마린바이오산업화지원센터) ;
  • 배송자 (신라대학교 자연과학대학 식품영양학과 및 마린바이오산업화지원센터) ;
  • 최영현 (동의대학교 한의과대학 생화학교실 및 대학원 바이오물질제어학과)
  • Published : 2005.06.01

Abstract

Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human cancer cells, however its molecular mechanisms are poorly understood. In the present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human cervical carcinoma HeLa cells. Treatment of HeLa cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells (9.83 fold of control). This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of cyclin A and cyclin-dependent kinase (Cdk)4 protein and concomitant induction of Cdc2, Cdk inhibitor p16 and p21. However, sulforaphane did not affect the levels of cyelooxygenases and telomere-regulatory gene products. Although further studies are needed, the present work suggests that sulforaphane may be a potential chemoprevetive/ chemotherapeutic agent for the treatment of human cancer cells.

브로콜리와 같은 십자화과 식물에서 glucoraphanin의 가수분해를 통해 생성되는 isothiocyanate의 일종인 sulforaphane은 강력한 항암효과를 가지며, 역학적 조사를 포함한 다양한 선행 연구에서 androgen 비 의존적으로 성장하는 전립선 암세포의 증식을 억제하는데 효과가 있었다. 최근 연구 결과에 따르면 sulforaphane은 다양한 인체암세포의 증식을 억제하고 apoptosis를 유발할 수 있는 것으로 알려지고 있으나, 정확한 분자생물학적 기전은 밝혀져 있지 않은 상태이다. 본 연구에서는 sulforaphane의 항암작용 기전을 조사하기 위하여 HeLa 인체자궁경부암세포의 증식에 미치는 sulforaphane의 영향을 조사하였다. Sulforaphane의 처리에 의한 HeLa 세포의 증식억제 및 형태적 변형은 세포주기 C2/M arrest 및 apoptosis 유발과 밀접한 관련이 있음을 알 수 있었다. RT-PCR 및 Western blot 분석 결과, sulforaphane 처리에 의하여 cyclin A 및 cyclin-dependent kinase (Cdk)4 단백질의 발현이 선택적으로 저하되었으며, Cdc2, Cdk inhibitor인 p16 및 p21의 발현은 증가되었다 그러나 sulforaphane은 cyclooxygenases의 발현이나 telomere 조절에 중요한 역할을 하는 인자들의 발현에는 큰 영향을 주지 못하였다. Sulforaphane의 항암 기전을 규명하기 위해서는 더 많은 연구가 부가적으로 필요하겠지만, 본 연구의 결과들에 의하면 sulforaphane은 강력한 인체암세포의 증식 억제 및 항암작용이 있을 것을 시사하여 준다고 할 수 있다.

Keywords

References

  1. Ajita, V. S., Dong, X., Karen, J. L., Rajiv, D and Shivendra, V. S. 2004. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth PC-3 xenografts in vivo. Carcinogenesis 25, 83-90 https://doi.org/10.1093/carcin/bgg178
  2. Chiao, J. W., Chung, F. L., Kancherla, R., Ahmed, T., Mittelman, A and Conaway, C. C. 2002. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 20, 631-636
  3. Choi, Y. H., Lee, W. H., Park, K. Y. and Zhang, J. 2000. p53-independent induction of p21 (W AF1/CIP1), reduction of eyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn. J. Cancer Res. 91, 164-173 https://doi.org/10.1111/j.1349-7006.2000.tb00928.x
  4. Datto, M. B., Yu, Y and Wang, X. F. 1995. Functional analysis of the transforming growth factor 13 responsive elements in the WAF1/Cip1/p21 promoter. J. BioI. Chem. 270, 28623-28628 https://doi.org/10.1074/jbc.270.48.28623
  5. Denis, G., Martin, G., Dominique, B., Albert, M., Yves, T and Richard, B. 2004. Induction of medulloblastoma cell apoptosis by sulforaphane, a dietary anticarcinogen from Brassica vegetable. Cancer Lett. 203, 35-43 https://doi.org/10.1016/j.canlet.2003.08.025
  6. Elledge, S. J. and Harper, J. W. 1994. Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell BioI. 6, 847-852 https://doi.org/10.1016/0955-0674(94)90055-8
  7. Girard, F., Strausfeld, D., Fernandez, A and Lamb, N. J. 1991. Cyctin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169-1179 https://doi.org/10.1016/0092-8674(91)90293-8
  8. Greenwood, M. J. and Landsdorp, P. M. 2003. Telomeres, telomerase, and hematopoietic stem cell biology. Arch. Med. Res. 34, 489-495 https://doi.org/10.1016/j.arcmed.2003.07.003
  9. Guadagno, T. M., Ohtsubo, M., Roberts, J. M. and Assoian, R. K. 1993. A link between eyctin A expression and adhesiondependent cell cycle progression. Science 262, 1572-1575 https://doi.org/10.1126/science.8248807
  10. Harper, J. W. 1997. eyelin dependent kinase inhibitors. Cencer Surv. 29, 91-107
  11. Heiss, E., Herhaus, C., Klimo, K., Bartsch, H and Gerhauser, C. 2001. Nuclear factor $\kappa$B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J. Biol. Chem. 276, 32008-32015 https://doi.org/10.1074/jbc.M104794200
  12. Homayoun, V. and Sam, B. 1996. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: The telomere loss/DNA damage model of cell aging. Exp. Gerontol. 31, 295-301 https://doi.org/10.1016/0531-5565(95)02025-X
  13. Jackson, S. J. and Singletary, K. W. 2004. Sulforaphane: a naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization. Carcinogenesis 25, 219-227
  14. Jackson, S. J. and Singletary, K. W. 2004. Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. J. Nutr. 134, 2229-2236
  15. Krek, W. and Nigg, E. A. 1991. Differential phosphorylation of vertebrate p34cdc2 kinase at the Gl/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO. J. 10, 305-316
  16. Li, Y., Jenkins, C. W., Nichols, M. A and Xiong, Y. 1994. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9, 2261-2268
  17. Mathieu, N., Pirzio, L., Freulet-Marriere, M. A, Desmaze, C and Sabatier, J. 2004. Telomeres and chromosomal instability. Cell Mol. Life Sci. 61, 641-656 https://doi.org/10.1007/s00018-003-3296-0
  18. Misiewicz, I., Skupinska, K. and Kasprzycka-Guttman, T. 2003. Sulforaphane and 2-oxohexyl isothiocyanate induce cell growth arrest and apoptosis in L-1210 leukemia and ME-18 melanoma cells. Oncol. Rep. 10, 2045-2050
  19. Ohsumi, K., Katagiri, C. and Kishimoto, T. 1993. Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262, 2033-2035 https://doi.org/10.1126/science.8266099
  20. Parnaud, G., Li, P., Cassar, G., Rouimi, P., Tulliez, J., Combaret, L and Gamet-Payrastre, J. 2004. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer 48, 198-206
  21. Petri, N., Tannergren, C., Holst, B., Mellon, F. A., Bao, Y., Plumb, G. W., Bacon, J., O'leary, K. A, Kroon, P. A., Knutson, L., Forsell, P., Eriksson, T., Lennernas, H. and Williamson, G. 2003. Absorption/Metabolism of Sulforaphane and Quercetin and regulation of phase 2 enzymes, in human jejunum in vivo. Drug Metab. Dispos. 31, 805-813 https://doi.org/10.1124/dmd.31.6.805
  22. Pham, N. A, Jacobberger, J. W., Schimmer, A. D., Cao, P., Gronda, M. and Hedley, D. W. 2004. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol. Cancer Ther. 3, 1239-1248
  23. Shang, J., Vanda, S., Bao, Y., Howie, A F., Beckett, G. J. and Gary, W. 2003. Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis 24, 497-503 https://doi.org/10.1093/carcin/24.3.497
  24. Sherr, C. J. 2000. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 60, 3689-3695
  25. Singh, S. V., Herman-Antosiewicz, A, Singh, A. V., Lew, K. J., Srivastava, S. K., Kamath, R., Brown, K. D., Zhan& L and Baskaran, R. 2004. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J. BioI. Chem. 279, 25813-25822 https://doi.org/10.1074/jbc.M313538200
  26. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K and Lee, S. S. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemica1s: down-regulation of COX-2 and iNCS through suppression of NF-$\kappa$B activation. Mutat. Res. 480-481, 243-268
  27. Wang, I., Liu, D., Ahmed, T., Chung, F. I., Conaway, H and Chiao, J. W. 2004. Targenting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int. J. Oncol. 24, 187-192
  28. Weinberg, R. A 1995. The retinoblastoma protein and cell cycle control. Cell 81, 323-330 https://doi.org/10.1016/0092-8674(95)90385-2
  29. Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R and Beach, D. 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701-704 https://doi.org/10.1038/366701a0
  30. Zeng Y. X and El-Deiry, W. S. 1996. Regulation of p21WAF1/ClPl expression by p53-independent pathways. Oncogene 12, 1557-1564
  31. Zhang, Y., Li, J. and Tan& J. 2005. Cancer-preventive isothiocyanates: dichotomous modulators of oxidative stress. Free Radic. BioI. Med. 38, 70-77 https://doi.org/10.1016/j.freeradbiomed.2004.09.033