DOI QR코드

DOI QR Code

Expression of DNA-dependent Protein Kinase and Its Relationship with Epidermal Growth Factor Receptor Signaling in Metastatic Cancer Cell Lines

DNA-PK 및 표피성장인자수용체의 신호전달이 암전이에 미치는 영향

  • Hwang Jee Young (Department of Obstetrics & Gynecology, College of Medicine, Pusan National University) ;
  • Kim Sun Hee (Department of Biochemistry, College of Medicine, Pusan National University) ;
  • Kang Chi Dug (Department of Biochemistry, College of Medicine, Pusan National University) ;
  • Yoon Man Soo (Department of Obstetrics & Gynecology, College of Medicine, Pusan National University)
  • 황지영 (부산대학교 의과대학 산부인과학교실) ;
  • 김선희 (부산대학교 의과대학 생화학교실) ;
  • 강치덕 (부산대학교 의과대학 생화학교실) ;
  • 윤만수 (부산대학교 의과대학 산부인과학교실)
  • Published : 2005.06.01

Abstract

The genetic instability of cancer cells may be related to inappropriately activated DNA repair pathways. In present study, the modulated expression of DNA-dependent protein kinase (DNA-PK), a major DNA repair protein, in human cancer metastatic cells was tested. The expressions of Ku70/80, regulatory subunit of DNA-PK, and the Ku DNA-binding activity in various highly metastatic cell lines were higher than those in each parental cell line. Also, the expression of DNA-PKcs, catalytic subunit of DNA-PK, and the kinase activity of the whole DNA-PK complex in highly metastatic cells were significantly increased as compared to those of parental cells, suggesting that the enhanced DNA repair capacity of metastatic cells could be associated with aberrant use of DNA repair, which may mediate tumor progression and metastatic potential. Increased EGFR (epidermal growth factor receptor) signaling has been associated with tumor invasion and metastasis, and the linkage between EGFR-mediated signaling and DNA-PK has been suggested. This study showed that PKI166, the new EGFR tyrosine kinase inhibitor, modulated the expressions of Ku70/80 and DNA-PKcs and also revealed the chemosensitization effect of PKI166 against metastatic cells may be in part due to inhibition of Ku70/80. These results suggest that interference in EGFR signaling by EGFR inhibitor resulted in the impairment of DNA repair activity, and thus DNA-PK could be possible molecular targets for therapy against metastatic cancer cells.

암세포의 유전적 불안정성은 부적절하게 활성화된 DNA수복경로와 관련되어 있다. 전이성 암은 높은 유전적 불안정성을 나타내는데, 이와 관련하여 본 연구에서는 전이성 암세포에서의 중요한 DNA수복 단백질의 하나인 DN의존성 단백질 키나아제(DNA-PK)의 발현 변화를 조사하였다. 여러 종류의 전이도가 다른 암세포들을 대상으로 한 실험에서 전이성 암세포들은 각각의 모세포에 비하여 DNA-PK 성분의 조절 소단위인 Ku70/80의 발현 및 Ku의 DNA 결합 활성이 증강되어 있었다. 또한 DNA-PK의 촉매 소단위인 DNA-PKcs의 발현 및 whole DNA-PK복합체의 kinase의 활성도 전이도가 큰 암세포에서 그 모세포보다 증강되어 있음을 알 수 있어, 전이성 암세포의 증강된 DNA수복능은 부적절한 DNA수복을 일으켜 암의 진행 및 전이를 촉진시키는 원인이 될 수 있음을 시사하였다. 한편 암세포의 표피성장인자수용체의 신호전달의 증강은 암의 침윤과 전이에 관련되어 있으며, DNA-PK의 기 기능에도 영향을 줄 수 있는 가능성이 보고 된 바 있는데, 본 연구에서는 표피성장인자수용체의 신호전달과 DNA-PK의 관련성을 명확히 밝히기 위하여 새로 개발된 EGFR tyrosine kinase inhibitor인 PKI166의 DNA-PK의 활성에 미치는 영향을 조사하였다. PKI166는 Ku70/80 및 DNA-PKcs의 발현을 억제하였고 이와 관련하여 전이성 및 항암제 다제내성 암세포에서 PKI166에 의하여 항암제에 대한 감수성을 증가시켜 항암제 내성을 나타내는 전이성 암세포 대한 치료법 연구에 DNA-PK가 분자적 표적이 될 수 있음을 밝혔다.

Keywords

References

  1. Carpenter G. 1987. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem. 56, 881-914 https://doi.org/10.1146/annurev.bi.56.070187.004313
  2. Chen, W. S., C. S. Lazar, M. Poenie, R. Y. Tsien, G. N. Gill and M.G. Rosenfeld. 1987. Requirement for intrinsic protein tyrosine kinase in the immediate and late actions of the EGF receptor. Nature 328, 820-823 https://doi.org/10.1038/328820a0
  3. Todaro, G. J., C. Fryling and J. E. De Larco. 1980. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc. NatI. Acad. Sci. USA 77, 5258-5262
  4. Milas, J., K. Mason, N. Hunter, S. Petersen, M. Yamakawa, K. Ang, J. Mendelsohn and Z. Fan. 2000. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin. Cancer Res. 6, 701-708
  5. Hu, G., W. Liu, J. Mendelsohn, J. M. Ellis, R. Radinsky, M. Andreeff and A. B. Deisseroth. 1997. Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. NatI. Cancer Inst. 89, 1271-1276 https://doi.org/10.1093/jnci/89.17.1271
  6. Iihara, K., H. Shiozaki, H. Tahara, K. Kobayashi, M. Inoue, S. Tamura, M. Miyata, H. Oka, Y. Doki, and T. Mori. 1993. Prognostic significance of transforming growth factor-alpha in human esophageal carcinoma. Implication for the autocrine proliferation. Cancer 71, 2902-2909 https://doi.org/10.1002/1097-0142(19930515)71:10<2902::AID-CNCR2820711004>3.0.CO;2-J
  7. Grandis, J. R., M. F. Melhem, W. E. Gooding, R. Day, V. A. Holst, M. M. Wagener, S. D. Drenning and D. J. Tweardy. 1998. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. NatI. Cancer Inst. 90, 824-832 https://doi.org/10.1093/jnci/90.11.824
  8. Klijn, J. G., P. M. Berns, P. J. Schmitz and J. A. Foekens. 1992. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr. Rev. 13, 3-17
  9. Dickstein, B. M., K. Wosikowski and S. E. Bates. 1995. Increased resistance to cytotoxic agents in ZR75B human breast cancer cells transfected with epidermal growth factor receptor. Mol. Cell Endocrinol. 110, 205-211 https://doi.org/10.1016/0303-7207(95)03535-F
  10. Balaban, N., J. Moni, M. Shannon, J. Dang, E. Murphy and T. Goldkom. 1996. The effect of ionizing radiation on signal transduction: antibodies to EGF receptor sensitize A431 cells to radiation. Biochim. Biophys. Acta 1314, 147-156 https://doi.org/10.1016/S0167-4889(96)00068-7
  11. Mendelsohn, J. 1997. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin. Cancer Res. 3, 2703-2707
  12. Fan, Z., J. Baselga, H. Masui and J. Mendelsohn. 1993. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well-established A431 cell xenografts. Cancer Res. 53, 4637-4642
  13. Schmidt, M and R B. Lichtner. 2002. EGF receptor targeting in therapy-resistant human tumors. Drug Resist. Updat. 5, 11-18 https://doi.org/10.1016/S1368-7646(02)00004-3
  14. Huang. S. M. and P. M. Harari. 2000. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin. Cancer Res. 6, 2166-2174
  15. Bandyopadhyay, D., M. MandaI, J. Adam, J. Mendelsohn and R Kumar. 1998. Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J. BioI. Chem. 273, 1568-1573 https://doi.org/10.1074/jbc.273.3.1568
  16. Harris, A. J. 1985. DNA repair: relationship to drug and radiation resistance, metastasis and growth factors. Int. J. Radiat. BioI. Relat. Stud. Phys. Chem. Med. 45, 675-690
  17. Usmani, B. A., J. Lunec and G. V. Sherbet. 1993. DNA repair and repair fidelity in metastatic variants of the B16 murine melanoma. J. Cell Biochem. 51, 336-344 https://doi.org/10.1002/jcb.240510313
  18. Wei, Q., J. Cheng, K. Xie, C. D. Bucana and Z. Dong. 1997. Direct correlation between DNA repair capacity and metastatic potential of K-1735 murine melanoma cells. J. Invest. Dermatol. 105, 3-6
  19. Yang, S. H., A. Nussenzweig, W. H. Yang, D. Kim and G. C. Li. 1996. Cloning and characterization of Rat Ku70: Involvement of Ku autoantigen in the heat-shock response. Rad. Res. 146, 603-611 https://doi.org/10.2307/3579375
  20. Kim, S. H., D. Kim, J. S. Han, C. S. Jeong, B. S. Chung, C. D. Kang and G. C. Li. 1999. Ku autoantigen affects the susceptibility to anticancer drugs. Cancer Res. 59, 4012-4017
  21. Walker, J. R., R. A. Corpina and J. Goldberg. 2001. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607-614 https://doi.org/10.1038/35088000
  22. Sweeney, P., T. Karashima, S. J. Kim, D. Kedar, B. Mian, S. Huang, C. Baker, Z. Fan, D. J. Hicklin, C. A Pettaway and C. P. Dinney. 2002. Anti-vascular endothelial growth factor receptor 2 antibody reduces tumorigenicity and metastasis in orthotopic prostate cancer xenografts via induction of endothelial cell apoptosis and reduction of endothelial cell matrix metalloproteinase type 9 production. Clin. Cancer Res. 5, 2714-2724
  23. Sana, H., Y. Veda, N. Takakura, G. Takemura, T. Doi, H. Kataoka, T. Murayama, Y. Xu, T. Sudo, S. Nishikawa, S. Nishikawa, H. Fujiwara, T. Kita and M. Yokode. 2002. Blockade of platelet-derived growth factor receptor-beta pathway induces apoptosis of vascular endothelial cells and disrupts glomerular capillary formation in neonatal mice. Am. J. Pathol. 161, 135-143 https://doi.org/10.1016/S0002-9440(10)64165-X
  24. Nakajima, M., K. Kashiwagi, J. Ohta, S. Furukawa, K. Hayashi, T. Kawashima and Y. Hayashi. 1994. Nerve growth factor and epidermal growth factor rescue PC12 cells from programmed cell death induced by etoposide: distinct modes of protection against cell death by growth factors and a protein-synthesis inhibitor. Neurosci. Lett. 176, 161-164 https://doi.org/10.1016/0304-3940(94)90072-8
  25. Bharti, A., S. K. Kraeft, M. Gounder, P. Pandey, S. Jin, Z. M. Yuan, S. P. Lees-Miller, R. Weichselbaum, D. Weaver, L.B. Chen, D. Kufe and S. Kharbanda. 1998. Inactivation of DNA-dependent protein kinase by protein kinase C delta: implications for apoptosis. Mol. Cell BioI. 18, 6719-6728
  26. Lu, Z., G. Jiang, P. Blume-Jensen and Hunter, T. 2001. Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol. Cell BioI. 21, 4016-4031 https://doi.org/10.1128/MCB.21.12.4016-4031.2001
  27. Solorzano, C. C., C. H. Baker, R. Tsan, P. Traxler, P. Cohen, E. Buchdunger, J. J. Killion and J. J. Fidler. 2001. Optimization for the blockade of epidermal growth factor receptor signaling for therapy of human pancreatic carcinoma. Clin. Cancer Res. 7, 2563-2572
  28. Liang, Y., P. Meleady, J. Cleary, S. McDonnell, L. Connolly and M. CIynes. 2001. Selection with melphalan or paclitaxel (Taxol) yields variants with different patterns of multidrug resistance, integrin expression and in vitro invasiveness. Eur. J. Cancer 37, 1041-1052 https://doi.org/10.1016/S0959-8049(01)00086-7
  29. Liang, Y., S. McDonnell and M. Clynes. 2002. Examining the relationship between cancer invasion/metastasis and drug resistance. Curr. Cancer Drug Targets 2, 257-277 https://doi.org/10.2174/1568009023333872
  30. Kim, S. H., J. H. Um, D. W. Kim, B. H. Kwon, D. W. Kim, B. S. Chung and C. D. Kang. 2000. Potentiation of chemosensitivity in multidrug-resistant human leukemia CEM cells by inhibition of DNA-dependent protein kinase using wortmannin. Leuk. Res. 11, 917-925
  31. Sartor. C. J. 2000. Biological modifiers as potential radiosensitizers: targeting the epidermal growth factor receptor family. Semin. Oncol. 27, 15-20
  32. Usmani, B. A. and G. V. Sherbet. 1996. Homologous recombination in variants of the B16 murine melanoma with reference to their metastatic potential. J. Cell Biochem. 61, 1-8 https://doi.org/10.1002/(SICI)1097-4644(19960401)61:1<1::AID-JCB1>3.0.CO;2-Z
  33. Webb, C. P. and G. F. 2000. Vande Woude. Genes that regulate metastasis and angiogenesis. J. Neurooncol. 50, 71-87 https://doi.org/10.1023/A:1006466605356
  34. Baselga, J. 2002. Targeting the epidermal growth factor receptor with tyrosine kinase inhibitors: small molecules, big hopes. J. Clin. Oncol. 20, 2217-2219