• Title/Summary/Keyword: cycle graph

Search Result 138, Processing Time 0.025 seconds

A Minimum Spanning Tree Algorithm for Directed Graph (방향그래프의 최소신장트리 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.159-171
    • /
    • 2011
  • This paper suggests an algorithm that obtains the Minimum Spanning Tree for directed graph (DMST). The existing Chu-Liu/Edmonds DMST algorithm has chances of the algorithm not being able to find DMST or of the sum of ST not being the least. The suggested algorithm is made in such a way that it always finds DMST, rectifying the disadvantage of Chu-Liu/Edmonds DMST algorithm. Firstly, it chooses the Minimum-Weight Arc (MWA) from all the nodes including a root node, and gets rid of the nodes in which cycle occurs after sorting them in an ascending order. In this process, Minimum Spanning Forest (MST) is obtained. If there is only one MSF, DMST is obtained. And if there are more than 2 MSFs, to determine MWA among all MST nodes, it chooses a method of directly calculating the sum of all the weights, and hence simplifies the emendation process for solving a cycle problem of Chu-Liu/Edmonds DMST algorithm. The suggested Sulee DMST algorithm can always obtain DMST that minimizes the weight of the arcs no matter if the root node is set or not, and it is also capable to find the root node of a graph with minimized weight.

PAIR MEAN CORDIAL LABELING OF SOME UNION OF GRAPHS

  • R. PONRAJ;S. PRABHU
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.55-69
    • /
    • 2024
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} && p\;\text{is even} \\ {\frac{p-1}{2}} && p\;\text{is odd,}}$$ and M = {±1, ±2, … ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{s}}_{{\lambda}_1}-\bar{\mathbb{s}}_{{\lambda}^c_1}{\mid}\,{\leq}\,1$ where $\bar{\mathbb{s}}_{{\lambda}_1}$ and $\bar{\mathbb{s}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of some union of graphs.

Some Cycle and Star Related Nordhaus-Gaddum Type Relations on Strong Efficient Dominating Sets

  • Murugan, Karthikeyan
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Let G = (V, E) be a simple graph with p vertices and q edges. A subset S of V (G) is called a strong (weak) efficient dominating set of G if for every $v{\in}V(G)$ we have ${\mid}N_s[v]{\cap}S{\mid}=1$ (resp. ${\mid}N_w[v]{\cap}S{\mid}=1$), where $N_s(v)=\{u{\in}V(G):uv{\in}E(G),\;deg(u){\geq}deg(v)\}$. The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by ${\gamma}_{se}(G)$ (${\gamma}_{we}(G)$). A graph G is strong efficient if there exists a strong efficient dominating set of G. In this paper, some cycle and star related Nordhaus-Gaddum type relations on strong efficient dominating sets and the number of strong efficient dominating sets are studied.

AN EXTENSION OF SALLEE'S THEOREM TO INFINITE LOCALLY FINITE VAP-FREE PLANE GRAPHS

  • Jung Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.83-93
    • /
    • 2006
  • A graph is k-cyclable if given k vertices there is a cycle that contains the k vertices. Sallee showed that every finite 3-connected planar graph is 5-cyclable. In this paper, by characterizing the circuit graphs and investigating the structure of LV-graphs, we extend his result to 3-connected infinite locally finite VAP-free plane graphs.

VARIABLE SUM EXDEG INDICES OF CACTUS GRAPHS

  • Du, Jianwei;Sun, Xiaoling
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.389-400
    • /
    • 2021
  • For a graph G, the variable sum exdeg index SEIa(G) is defined as Σu∈V(G)dG(u)adG(u), where a ∈ (0, 1) ∪ (1, +∞). In this work, we determine the minimum and maximum variable sum exdeg indices (for a > 1) of n-vertex cactus graphs with k cycles or p pendant vertices. Furthermore, the corresponding extremal cactus graphs are characterized.

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

THE CONNECTED SUBGRAPH OF THE TORSION GRAPH OF A MODULE

  • Ghalandarzadeh, Shaban;Rad, Parastoo Malakooti;Shirinkam, Sara
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1031-1051
    • /
    • 2012
  • In this paper, we will investigate the concept of the torsion-graph of an R-module M, in which the set $T(M)^*$ makes up the vertices of the corresponding torsion graph, ${\Gamma}(M)$, with any two distinct vertices forming an edge if $[x:M][y:M]M=0$. We prove that, if ${\Gamma}(M)$ contains a cycle, then $gr({\Gamma}(M)){\leq}4$ and ${\Gamma}(M)$ has a connected induced subgraph ${\overline{\Gamma}}(M)$ with vertex set $\{m{\in}T(M)^*{\mid}Ann(m)M{\neq}0\}$ and diam$({\overline{\Gamma}}(M)){\leq}3$. Moreover, if M is a multiplication R-module, then ${\overline{\Gamma}}(M)$ is a maximal connected subgraph of ${\Gamma}(M)$. Also ${\overline{\Gamma}}(M)$ and ${\overline{\Gamma}}(S^{-1}M)$ are isomorphic graphs, where $S=R{\backslash}Z(M)$. Furthermore, we show that, if ${\overline{\Gamma}}(M)$ is uniquely complemented, then $S^{-1}M$ is a von Neumann regular module or ${\overline{\Gamma}}(M)$ is a star graph.

A Study on a 2 Layer Channel Router Considering Cycle Problems (사이클 문제를 고려한 2층채널 배선기에 관한 연구)

  • Kim, Seung-Youn
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.102-108
    • /
    • 1988
  • In this paper, a channel routing algorithm which considers cycle problem is proposed. The requirements of routing is given by pin numbers which imply interconnections between a upper block and lower block of the channel. Output is represented by interconnections among equipotential pins. When input is given, the algorithm constructs a channel representation graph and makes weight of each net. And then it checks cycle and finidhes the routing. If the cycle is detected, it finds path with maze routing. This algorithm have coded in C language on IBM-PC /AT. If cycle is not detected, the results are near optimal values. If it is detected, routing is possible as well.

  • PDF

TOTAL COLORINGS OF PLANAR GRAPHS WITH MAXIMUM DEGREE AT LEAST 7 AND WITHOUT ADJACENT 5-CYCLES

  • Tan, Xiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.139-151
    • /
    • 2016
  • A k-total-coloring of a graph G is a coloring of $V{\cup}E$ using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number ${\chi}^{{\prime}{\prime}}(G)$ of G is the smallest integer k such that G has a k-total-coloring. Let G be a planar graph with maximum degree ${\Delta}$. In this paper, it's proved that if ${\Delta}{\geq}7$ and G does not contain adjacent 5-cycles, then the total chromatic number ${\chi}^{{\prime}{\prime}}(G)$ is ${\Delta}+1$.

DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES USING COMPLETE DIFFERENCES

  • Cho, Jung-R.;Gould, Ronald J.
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1623-1634
    • /
    • 2008
  • The complete multipartite graph $K_{n(2t)}$ having n partite sets of size 2t, with $n\;{\geq}\;6$ and $t\;{\geq}\;1$, is shown to have a decomposition into gregarious 6-cycles, that is, the cycles which have at most one vertex from any particular partite set. Complete sets of differences of numbers in ${\mathbb{Z}}_n$ are used to produce starter cycles and obtain other cycles by rotating the cycles around the n-gon of the partite sets.