• 제목/요약/키워드: cutting time

검색결과 1,405건 처리시간 0.023초

차량 소음기용 다공파이프 자동절단 메커니즘 설계에 관한 연구 (A Study on the Design of the Automatic Cutting Mechanism of the Perforation Pipes in an Automobile Muffler)

  • 김용석;정찬세;양순용
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.350-356
    • /
    • 2011
  • In this paper, we proposed the automatic cutting mechanism of the perforation pipes in an automobile muffler. This cutting mechanism makes continuous work possible, because it performs the batch work via the sequential operation of loading, feeding, cutting, and discharging. The proposed cutting mechanism consists of the frame unit, escape unit, turning unit, feeding unit, vision system, clamping unit, spindle/cutting unit and cooling unit. And, these mechanisms have been modularized through mechanical, dynamical and structural optimized design using the SMO (SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The cutting process cycle is performed in the order of loading, vision processing, feeding, clamping, cutting and discharging. And the cycle time for cutting one piece was designed to be completed in four seconds.

자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석 (An analysis of cutting process with ultrasonic vibration by ARMA model)

  • I.H. Choe;Kim, J.D.
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF

프로피버스 통신을 이용한 실시간 절삭 상태 모니터링에 관한 연구 (A Study on Real Time Cutting Monitoring using Profibus)

  • 윤상환;조상필;류성기
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2016
  • The cutting processes used for monitoring engineering includes analysis and feedback about strange conditions, tools collision and tools wear in real time, for improving the working ratio of equipment and productivity. In this study, we proposed monitoring using profibus to increase the reliability as the most important factor for cutting monitoring. The profibus can increase the reliability of cutting monitoring for cutting torque of a main spindle motor and a feed motors through PLC-based interface.

견실한 적응 제어기를 이용한 절삭력 제어 (Cutting Force Control by Using an Adaptive Robust Controller)

  • Kim, J.W.;Kim, T.Y.
    • 한국정밀공학회지
    • /
    • 제12권4호
    • /
    • pp.55-66
    • /
    • 1995
  • This paper presents an explicit pole-assignment adaptive servocontrol shceme and its application to cutting force regulation for feedrate maximization. The controller structure of the suggested adaptive control scheme is based on robust control theory. This controller structure is then combined with an on-line model estimation algorithm. The whole scheme is applied to a milling process control. The results of real time cutting experimental studies show that the asymptotic regulation of milling peak cutting forces can be achieved with robust- ness against the time varying perturbations to the process model parameters, which are caused by nonlinear cutting dynamics.

  • PDF

볼 엔드밀 가공시 형상특징을 고려한 이송속도의 최적화에 관한 연구 (Feedrate Optimization in the Ball Endmilling Process Considering Shape Features)

  • 김병희
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.257-265
    • /
    • 1996
  • When machining of a free-form surface with a ball endmill it is very important to select proper cutting conditions considering the geometrical shape of a workpiece to make the production more effective and reduce the machining time. Even though the same cutting conditions and materials are used, the cutting system of different geometry part machining shows the different static/dynamic characteristics. In this study, through various cutting experiments, we can construct the data base of stable cutting conditions for the machining of a Zine Alloy. We can get some relational plots between the optimal feedrates and classified shape features and parameters. On the basis of these results, we can develop the feedrate optimization program OptiCode. The developed program make it possible to reduce the cutting time and increase the machining accuracies.

  • PDF

볼엔드밀 가공에서 공구 런아웃 매개변수 검출 (Cutter Runout Parameter Estimation in Ball-End Milling)

  • 김창주;김성윤;주종남
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.171-178
    • /
    • 2000
  • In this study, an indirect method to estimate the setup runout of a ball-end mill from cutting force signal is proposed. This runout makes cutting forces of each tooth of the milling cutter unequal. By transforming the cutting force model from time domain to frequency domain through time-convolution theorem, the magnitude and phase angle of runout can be explicitly expressed with material constants, cutting conditions, and force signal. The static setup runout can be obtained by extrapolating estimated effective runout, which is independent of feedrate but decreases linearly with increase in axial depth of cut. The setup runout estimated by slot cutting experiments, shows good agreement with the measured one.

  • PDF

절삭가공시 절삭력 신호의 카오스적거동에 관한 규명 (Verification on Chaotic Behavior of Cutting Force in Metal Cutting)

  • 구세진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.96-100
    • /
    • 1996
  • So far the analysis and modeling of cutting process is studied commonly assumed as being linear stochastic or chaotic without experimental verification. So we verified force signals of cutting process(ball end-milling) is low-dimensional chaos by calculating Lyapunov Exponents. reconstructing attractor using time delay coordinates and calcula-ting it's fractal dimension.

  • PDF

2차원 절삭에서 FEM 해석의 유효성에 관한 연구 (A Study on the Effectiveness of Finite Element Method in Orthogonal Cutting)

  • 윤재웅;김홍석
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.42-49
    • /
    • 2010
  • In general, the direct experimental approach to study machining processes is expensive and time consuming, especially when a wide range of parameters are included: tool, geometry, materials, cutting conditions, etc. The aim of this study is to verify the effectiveness of finite element method for orthogonal cutting process by comparing the simulated cutting forces with measured results. Two commercialized finite element codes $AdvantEdge^{TM}$ and Deform-$2D^{TM}$ have been used to simulate the cutting forces in orthogonal cutting process. In this paper, estimated cutting and feed force components are compared with experimental results for different two materials. As a result, it has been found that FEM simulation is effective for understanding and predicting the orthogonal cutting process although some improvements on friction model and remeshing process are needed.

선삭에서 공구의 윗면경사각이 비절삭저항에 미치는 영향 (The Effect of Back Rake Angle of Tool for Specific Cutting Resistance in Turning)

  • 김정현
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.80-89
    • /
    • 1998
  • Back rake angle of tool is one of the fundamental effects to the cutting ability. In this paper, for several back rake angle of lathe tool (-5$^{\circ}$ , 0$^{\circ}$ , 5$^{\circ}$ , 10$^{\circ}$ , 15$^{\circ}$ ), we experimentally examine cutting forces via orthogonal cutting. Using measured cutting forces, a formula for specific cutting resistance is derived according to the variation of tool angle. Also, the measured cutting forces are analyzed in both time and frequency domain. Cutting parameters are obtained by measuring the thickness of chip, and the effect of the back rake angle of tool is manifested. This study maintains the predicted cutting model with improved accuracy.

  • PDF