• Title/Summary/Keyword: cushion

Search Result 360, Processing Time 0.03 seconds

Effect of Rehabilitation with Balance Trainer Machine on Pain and Postural Stability after Ankle Sprain (외측측부인대 손상을 동반한 발목염좌 환자에서 균형 훈련기를 이용한 훈련이 통증 및 균형능력에 미치는 영향)

  • Jung, Sang-mo;Lee, Jae-nam;Jeong, Young-june;shin, Young-il
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2016
  • Background: Instability due to ankle sprains will be accompanied by a problem of balance and pain change. Balance trainer is used to improve the ankle strength and balance ability. The purpose of this study was to evaluate the change of pain and postural balance ability in ankle joint after balance trainer application in patients with ankle sprain and instability. Methods: Twenty patients in K hospital in Incheon were enrolled. Balance trainer was applied to 10 subjects in the experimental group and 10 subjects in the Balance cushion under the same conditions as the experimental group to compare the pain and balance ability. Results: In the experimental group, there was a significant difference in the change of the pain variation. In the postural balance ability comparison, there was a significant difference in total and post - posterior comparison compared to the control, but there was no significant difference in the postural balance ability comparison. Conclusion: Pain and postural balance ability of patients with instability due to ankle sprain improved the pain and balance ability of the Balance trainer group compared to the Balance cushion training group.

  • PDF

A Study on Characterizing a Healthy Driving Posture (건강한 운전 자세 특성 연구)

  • Kim, Darae;Choi, Hyungyun;Lee, Joungho;Ahn, Sungmin;Lee, Shiuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.121-129
    • /
    • 2013
  • To find a healthy driving posture, in this study, survey and empirical analysis given onto measurement of car-seat angle has been performed. Among 153 male respondents, those drivers who has minimum 5 year experience and 2 hours daily driving has been selected by a multiple screening process. They were further confirmed to have no discomfort history in any body region caused by the driving task. Final 44 people verified that their actual driving posture is not significantly different (p = 0.692) from healthy one they think. And their data, accordingly, the healthy driving postures are clustered based on the same seat-cushion angle, seat-back angle and trunk-thigh angle. Consequently, three seat-angles of the 44 subjects showed a significant difference only with their height information which is the most effecting factor on driving posture among the physical characteristics. That is a first result categorized healthy driving posture classified physical, if it were departmentalized into additional study, could be able to reflected a factor of "healthy" on car seat design.

An application of wave equation analysis program to pile dynamic formulae

  • Tokhi, H.;Ren, G.;Li, J.
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.345-360
    • /
    • 2015
  • Wave equation analysis programs (WEAP) such as GRLWEAP and TNOWave were primarily developed for pre-driving analysis. They can also be used for post-driving measurement applications with some refinements. In the case of pre-driving analysis, the programs are used for the purpose of selecting the right equipment for a given ground condition and controlling stresses during pile driving processes. Recently, the program is increasingly used for the post-driving measurement application, where an assessment based on a variety of input parameters such as hammer, driving system and dynamic behaviour of soil is carried out. The process of this type of analysis is quite simple and it is performed by matching accurately known parameters, such as from CAPWAP analysis, to the parameters used in GRLWEAP analysis. The parameters that are refined in the typical analysis are pile stresses, hammer energy, capacity, damping and quakes. Matching of these known quantities by adjusting hammer, cushion and soil parameters in the wave equation program results in blow counts or sets and stresses for other hammer energies and capacities and cushion configuration. The result of this analysis is output on a Bearing Graph that establishes a relationship between ultimate capacity and net set per blow. A further application of this refinement method can be applied to the assessment of dynamic formulae, which are extensively used in pile capacity calculation during pile driving process. In this paper, WEAP analysis is carried out to establish the relationship between the ultimate capacities and sets using the various parameters and using this relationship to recalibrate the dynamic formula. The results of this analysis presented show that some of the shortcoming of the dynamic formula can be overcome and the results can be improved by the introduction of a correction factor.

Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand

  • Dixit, Manish S.;Patil, Kailas A.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.363-377
    • /
    • 2013
  • Any structure constructed on the earth is supported by the underlying soil. Foundation is an interfacing element between superstructure and the underlying soil that transmits the loads supported by the foundation including its self weight. Foundation design requires evaluation of safe bearing capacity along with both immediate and long term settlements. Weak and compressible soils are subjected to problems related to bearing capacity and settlement. The conventional method of design of footing requires sufficient safety against failure and the settlement must be kept within the allowable limit. These requirements are dependent on the bearing capacity of soil. Thus, the estimation of load carrying capacity of footing is the most important step in the design of foundation. A number of theoretical approaches, in-situ tests and laboratory model tests are available to find out the bearing capacity of footings. The reliability of any theory can be demonstrated by comparing it with the experimental results. Results from laboratory model tests on square footings resting on sand are presented in this paper. The variation of bearing capacity of sand below a model plate footing of square shape with variation in size, depth and the effect of permissible settlement are evaluated. A steel tank of size $900mm{\times}1200mm{\times}1000mm$ is used for conducting model tests. Bearing capacity factor $N_{\gamma}$ is evaluated and is compared with Terzaghi, Meyerhof, Hansen and Vesic's $N_{\gamma}$ values. From the experimental investigations it is found that, as the depth of sand cushion below the footing ($D_{sc}$) increases, ultimate bearing capacity and settlement values show an increasing trend up to a certain depth of sand cushion.

Drop Analysis of a Package and Cushion Performance of Drum Washing Machine (드럼 세탁기 포장재 낙하해석 및 완충 특성)

  • Kim, Chang-Sub;Bae, Bong-Kook;Sung, Do-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1733-1740
    • /
    • 2010
  • The analysis of the dynamic behavior of the packaging of a drum washing machine has been carried out under the drop impact conditions. LS-DYNA software is used for performing the finite element analysis, and the validations are performed by comparing with the impact acceleration, effective stress and deformation of cushioned package with high-speed camera during free drop test. By analyzing the cushion characteristics and the design parameters of the original packaging, a packaging with an improved design is developed, and this design is validated on the basis of the results of the distribution test which consists of drop test, vibration test, stacking test, squeez test and so on. The drop impact simulation and analysis methods developed in this study can be adopted to successfully improve the cushioning provided by the packaging and to reduce the cost involved in developing new packaging for drum washing machines.

Reliability and validity of pelvic mobility measurement using a cushion sensor in healthy adults

  • Jung, Seung-Hwa;Kim, Su-Kyeong;Lee, Ji-Hyun;Choi, Soo-Ih;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.2
    • /
    • pp.74-81
    • /
    • 2020
  • Objective: To prevent low back pain, an objective evaluation tool to evaluate pelvic mobility and exercise to improve the flexibility of the lumbar region is needed. The purpose of this study was to compare the results of pelvic mobility measurements using the Wii Balance Board (WBB) and Sensbalance Therapy Cushion (STC), evaluate the usefulness of the STC as a tool for measuring pelvic mobility. Design: Cross-sectional study. Methods: Fifty healthy subjects participated in this study. The subjects performed pelvic mobility range, proprioception, reaction time and reach of the arm using the STC. The pelvic movement parameter was measured two times to determine the intra-rater reliability. To measure the correlation between lumbar muscle tension and pelvic mobility, Myovision was used to measure tension of L4, L5 level erector spinae muscle. Correlations between measured variables were checked to determine the validity of the pelvic mobility assessment tool. Results: STC showed high test-retest reliability in pelvic tilt measurement and reaching task [intraclass correlation coefficients (3,1)=0.804-0.915]. The relationship between WBB and STC showed a significant positive correlation with the pelvic tilt and reaching task (p<0.05). Posterior tilt and erector spinae activation (Lt. L5) showed a significant negative correlation (p<0.05). Left, right tilt and erector spinae activation (L5) showed a significant negative correlation (p<0.05). Conclusions: This study confirmed the advantages of the STC and found efficiency as an objective measuring device of pelvic mobility.

Non-isothermal Stamping Analysis of Automotive Seat Cushion Panel Using Mg Alloy Sheet (마그네슘을 적용한 자동차 시트 쿠션 패널 비등온 성형해석)

  • Seo, Oh Suk;Lee, Chung An;Park, Chang Su;Kim, Hwa Jin;Lee, Kyoung Teak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.605-611
    • /
    • 2016
  • Mg alloy sheet exhibits significant differences in tensile and compressive yield stress depending on the temperature, as well as variations in its hardening behavior. Such unusual behavior makes it difficult to simulate the forming process of Mg alloy sheets. Results of analysis tend to deviate significantly from the experimental data because commercial software do not completely implement the unusual hardening behavior, yield asymmetry and temperature dependent changes in the Mg alloy's material properties. In the previous study, an in-plane tension-compression cyclic tester was developed to predict the cyclic behavior of Mg alloy sheets at an elevated temperature of up to $250^{\circ}C$. A new constitutive equation was suggested to analyze the unusual behavior, and was implemented in the commercial software in the form of user subroutine. In this paper, a stamping process of Mg seat cushion panel for automotive parts was simulated using the experimental data and user subroutine. Based on the analysis, an optimal temperature condition was determined and a stamping die shape at each step was suggested in the non-isothermal stamping of Mg alloy sheets.

Packaging Design of EPS Cooling Box by Theoretical Heat Flow and Random Vibration Analysis (이론적 열유동 및 랜덤 진동 해석을 적용한 EPS 보냉용기의 포장설계)

  • Kim, Su-Hyun;Park Sang-Hoon;Lee, Min-A;Jung, Hyun-Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.175-180
    • /
    • 2021
  • Although it has recently been regulated for use as an eco-friendly policy in Korea, the use of EPS (Expanded Polystyrene) cooling boxes, which are used as cold chain delivery insulation boxes for fresh agricultural and livestock products, is also increasing rapidly as e-commerce logistics such as delivery have increased rapidly due to COVID-19. Studies were conducted to optimize the EPS cooling container through internal air heat flow of CFD (Computational Fluid Dynamics) analysis and FEM (Finite Element Method) random vibration analysis using domestic PSD (Power Spectral Density) profile of the EPS cooling box to which the refrigerant is applied in this study. In the analysis of the internal air heat flow by the refrigerant in the EPS cooling box, the application of vertical protrusions inside was excellent in volume heat flow and internal air temperature distribution. In addition, as a result of random vibration analysis, the internal vertical protrusion gives the rigid effect of the cooling box, so that displacement and stress generation due to vibration during transport are smaller than that of a general cooling container without protrusion. By utilizing the resonance point (frequency) of the EPS cooling box derived by the Model analysis of ANSYS Software, it can be applied to the insulation and cushion packaging design of the EPS product line, which is widely used as insulation and cushion materials.

Exploration of Response to Dog's Far-Infrared Energy Release Loess Fabric Cushion (반려견의 원적외선 에너지 방출 황토원단 방석에 대한 반응의 탐색)

  • Lee, Ku Yeon;Lee, Hyung H.;Hahm, Suk Chan
    • Journal of Naturopathy
    • /
    • v.9 no.1
    • /
    • pp.33-36
    • /
    • 2020
  • Purpose: For the health of pet dogs and to reduce harm to humans, we investigated the preference of pet dogs on cushions made from functional ocher textile, which is known to be beneficial to human health. Methods: The preference of 12 small dogs between cushions made using functional ocher textile and normal yellow colored fabrics was observed. Results: The observation study showed 83.3% preference on cushions made from functional ocher textile where dogs rested or slept mostly. The biting behavior was improved by 83.3%. After using the functional cushions, four dogs with eye disease, one with eczema, and two with allergy showed improvements while others showed no improvement. After the experience, 50% of dogs became quieter. 87.5% of dogs showed more mild temperament. Conclusions: The functional ocher cushions showed preferences by dogs as well as brought positive improvements with the temperament and health conditions. This study proves to be a valuable fundamental research in this field of functional ocher cushions.

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.