• Title/Summary/Keyword: curved type

Search Result 390, Processing Time 0.026 seconds

Influence of Four Types of Steering Assistive Devices on Driving Performance: Comparison of Normal and Disabled People with and without Driver's License (4가지 선회보조 장치가 운전 성능에 미치는 영향: 장애 유무와 운전면허 유무에 따른 비교)

  • Song, Jeongheon;Kim, Yongchul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.32-42
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of Healthy and disabled groups (with or without driver's license) to control steering wheel by using steering assistive devices in the driving simulator. The persons with partial loss of use of all four limbs have problems in operation of the motor vehicle because of functional loss to operate steering wheel. Therefore, if steering assistive devices for grasping the steering wheel are used to control the vehicle on the road in persons with disabilities, the disabled persons can improve mobility in their community life by driving a motor vehicle safely. Ten healthy subjects (with or w/o driver's license) and ten subjects with physical disabilities (with or w/o driver's license) were involved in this study to evaluate driving performance to operate steering wheel by using four types of steering assistive devices (Single-pin, V-grip, Palm-grip, Tri-pin) in driving simulator. STISim Drive 3 software was used to test the steering performance in four scenarios: straight road at low and high speed of vehicle (40 km/h and 80 km/h), curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA in order to compare the effects of two factors (type of steering assistive device and subject group) in the three dependent variables of driving performance (the lateral position of vehicle, standard deviation of lateral position representing the variation of the left and right movement of the vehicle and the number of line crossing). The mean values of the three dependent variables (lateral position, standard deviation of lateral position, the number of line crossing) of steering performance were statistically significantly smaller for the healthy or disabled groups with driver's license than the other groups without driver's license on the curved road at high speed of vehicle compared to low speed of vehicle.

A Study on the Figuration of Korean Traditional Pattern Images (한국 전통문양의 이미지 형상화 소고)

  • 장수경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1001-1010
    • /
    • 1998
  • The purpose of this study was to investigate the images and characteristic formative elements of Korean traditional patterns. The Korean pattern image could be interpreted into visual elements of design based on the images, the characteristic formative elements of Korean traditional patterns, and their relationships. Fourteen patterns selected from 5 groups of Korean patterns were used as stimuli. An image evaluation using a 2-point sementica scale of 19 bipolar adjectives, and an impression evaluation of which results were presented by visual drawing using lines and shapes were carried out. The data were analyzed by correspondence analysis and cluster analysis. The major findings are as follows; 1. Fourteen patterns and 19 adjectives were marked on a perception map composed of two (x and y-) axes. The bipoles of x- and y axes were soft-hard and splendid-artless, respectively. 2. Four clusters semerged to account for the dimensional sturucture of 14 patterns and 19 adjectives. These were splendid image, soft image, individualistic image, and sophisticated image. However there was no pattern which belonged to the cluster, sophisticated image. The Korean pattern image was founded to be better related to the kind of patterns than the type of patterns. 3. The characteristic formative elements obtained from the impression test were contour of motif, repeated line or shape, various curved lines, and decorative elements. 4. The splendid image was related to Bongwhang patterns and detailed line and complexity. The individualistic image was related to the abstractive form of Bongwhang pattern and the decorative form of Cloud pattern both of which have the characteristics of point-symmetry and abstraction, and Turtle-back pattern. In this case, the related charac-teristic formative element was identified to be repeated lines. The soft image was related to Moran, Cloud, and Taegeuk patterns. The related characteristic elements were various types of curved lines, decorative elements, and rounded contours.

  • PDF

Development of a Tensile Force Measurement Device for Long-term (인장력 장기 측정기 개발에 관한 연구)

  • Shin, Kyung Jae;Lee, Swoo Heon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.759-768
    • /
    • 2006
  • The turn-buckle inserted between tension members is a device adjusting a tensile force in tension member. However, the measurement of designed tensile force is impossible and the tensile force is determined based on the experience of field workers. The conventional turn-buckle might be used without any adjustment even though the tensile force has been changed for long term. To improve the disadvantages of conventional turn-buckles a turn-buckle which is measurable the tensile force is developed. In this study, the displacement to the lateral direction is induced by the deformation of curved elements if the tensile force is applied to the new type of turn-buckle that the straight elements are slightly curved. The total lateral displacement could be measured by using the micrometer or vernier-calipers. Trial devices for a measurable turn-buckle were made and tested. An theoretical study was also conducted to show the applicability, and parametric studies were conducted. The appropriate shape and capacity were determined by the parametric study.

Analysis of Ship Hull Plate Bending By Roll Bending Machine (Roll bending machine에 의한 선체외판의 곡면가공 해석)

  • Kim, You-Il;Shin, Jong-Gye;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.142-149
    • /
    • 1996
  • Pyramid type three roll bending machines are widely used in roll-bending process to produce singly curved plate. In forming singly curved plate, controlling the vertical displacement of the center roller is most important to acquire the shape required and automation system of the process. In this paper roller bending process is modeled as an elastic-plastic phenomenon and analyzed using beam theory and finite element method. In finite element analysis the workpiece is modeled by using beam elements and plane strain elements respectively. Through the analyses vertical center roller displacement is obtained to get constant curvature distribution along arc length. The relationship between center roller displacement and curvature in steady state as well as residual stress and strain along plate thickness direction are calculated through finite element analysis.

  • PDF

Study on Torsion due to Automotive Body Type at Track Driving (궤적주행 시 차체 종류에 따른 비틀림에 관한 연구)

  • Choi, Youn-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Because there is no suspension and differential devices at cart body, the deformation of the frame happened during kart driving affects the driving performance caused by the elastic deformation and the fatigue life of kart frame resulted from the permanent deformation. The dynamic behavior of kart caused by the torsional deformation during circular driving is the important factor of these two kinds of deformations. In order to analyze the dynamic behavior of kart at this curved section, GPS is used to trace the track of kart and the torsional stress at kart-frame has been measured with real time. The mechanical properties of kart-frames for leisure and racing are investigated through material property analysis and tensile test. Torsional stress concentration and frame distortion are investigated through stress analysis on frame on the basis of study result. The real karts for leisure and racing kart are also tested in each driving condition by using the driving analysis equipment. The driving behavior of kart at the curved section are investigated through this test. As the phenomenon of load movement due to centrifugal force at car is happened during circular driving, the torsional stress occurs at cart steel frame.

Tool Design and Numerical Verification for Thick Plate Forming of Hollow-Partitioned Steam Turbine Nozzle Stator (스팀 터빈용 중공 분할형 노즐 정익의 후판 성형을 위한 금형 설계 및 해석적 검증)

  • Kang, B.K.;Kwak, B.S.;Yoon, M.J.;Jeon, J.Y.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • As a stator for steam turbine diaphragm, hollow-type nozzle stator to substitute for conventional solid one is introduced in this study. This hollowed stator can be separated into two parts such as upper and lower plates with large and curved surface area. This study focuses on thick plate forming process for the upper plate of the hollow-partitioned nozzle stator. First, to reduce forming defects such as under-cut and localized thinning of the deformed plate, and to avoid tool interruption between forming punch and lower die, tool design including the position determination of forming surfaces is performed. Uni-axial tensile tests are carried out using SUS409L steel plate with initial thickness of 5.00mm, and plastic strain ratio (r-value) is also obtained. Due to the asymmetric curved configuration of the upper plate, it is hard to adopt a series of blank holder or draw-bead, so the initial plate during this thick plate forming experiences unstable and non-uniform contact. To easy this forming difficulty and find suitable tool geometry without sliding behavior of the workpiece in the die cavity, two geometric parameters with respect to each shoulder angle of the lower die and the upper punch are adopted. FE models with consideration of 21 combinations for the geometric parameters are built-up, and numerical simulations are performed. From the simulated and predicted results, it is shown that the geometric parameter combinations with ($30^{\circ}$, $90^{\circ}$) and ($45^{\circ}$, $90^{\circ}$) for the shoulder angle of the lower die and the upper punch are suitably applied to this upper plate forming of the hollow-partitioned nozzle stator used for the turbine diaphragm.

FEM Analysis of a Waterproof Seal of Automotive Electrical Connectors (자동차 전장 커넥터 방수 시일의 유한요소해석)

  • Han, JeongJin;Hwang, WonTae;Kim, HoKyung
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • In the case of high-voltage connectors applied to automobiles, waterproofing has become an important issue for the safety of automobiles. In this study, structural analysis is performed on silicone rubber-type waterproof seals used in the voltage connector. For the structural analysis, the tensile properties of the actual rubber seal are evaluated using a miniaturized tensile testing machine. The Mooney-Rivlin material constants of the rubber seal are determined as follows; $D_1=0$, $C_{01}=0.241$, $C_{10}=0.0142$. The analysis shows that the contact pressure at the top of the seal where the seal and male connector are in contact is approximately three times higher than that at the bottom of the seal where the seal and female connector are in contact. It is confirmed that the waterproofing performance of the rubber seal depends on the contact pressure of the seal bottom where the seal and female connector are in contact. The contact pressure for waterproofing is found to be 4.7 bar. The strain concentration of the curved part is attributed to excessive initial tension. Therefore, a redesign is recommended for uniform stress or strain distribution in the curved section of the seal in response to the stress relaxation problem due to permanent deformation.

Tomographic Imaging for Structural Health Monitoring Inspection of Containment Liner Plates using Guided Ultrasonic (유도초음파를 활용한 격납건물 라이너 플레이트 상시감시 모니터링 검사를 위한 토모그래피 영상화)

  • Park, Junpil;Cho, Younho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Large-scale industrial facility structures continue to deteriorate due to the effects of operating and environmental conditions. The problems of these industrial facilities are potentially causing economic losses, environmental pollution, casualties, and national losses. Accordingly, in order to prevent disaster accidents of large structures in advance, the necessity of diagnosing structures using non-destructive inspection techniques is being highlighted. The defect occurrence, location and defect type of the structure are important parameters for predicting the remaining life of the structure, so continuous defect observation is very important. Recently, many researchers have been actively researching real-time monitoring technology to solve these problems. Structure Health Monitoring Inspection is a technology that can identify and respond to the occurrence of defects in real time, but there is a limit to check the degree of defects and the direction of growth of defects. In order to compensate for the shortcomings of these technologies, the importance of defect imaging techniques is emerging, and in order to find defects in large structures, a method of inspecting a wide range using guided ultrasonic is effective. The work presented here introduces a calculation for the shape factor for evaluation of the damaged area, as well as a variable β parameter technique to correct a damaged shape. Also, we perform research in modeling simulation and an experiment for comparison with a suggested inspection method and verify its validity. The curved structure image obtained by the advanced RAPID algorithm showed a good match between the defect area and the shape.

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Evaluation of Coraco-Acromial Arch in Patients with Impingement Syndrome (견관절 충돌 증후군 환자에서 오훼 견봉궁의 자기공명 영상 평가)

  • Rhee Kwang-Jin;Byun Ki-Yong;Kwon Soon-Tae;Byun Kyu-Hwan
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • Impingement syndrome is caused by a conflictual status between rotator cuff, subacromial bursa and anatomic and functional coracoacromial arch. The purpose of this study was to assessment the coracoacromial arch by MRI and to determine major factors among five components of coracoacromial arch. We analyzed forty-two cases of clinical impingement sign and test positive and postoperative confirmed diagnosed from March, 1991 to January, 1999. We evaluated acromial end abnormality according to the Bigliani acromial type and formation of osteophyte. Clavicular end abnormality classified flat, outward protrusion, inward protrusion to coracoacromial arch. Acromioclavicular joint abnormalities were advanced osteoarthritis and positive signal change. Coracoacromial ligament thickening was above 2 mm in oblique sagittal image. Coracoid process abnormality was inward protrusion to coracoacromial arch. All consecutive patients abnormalities were as follows: clavicular end osteophyte formation and inward protrusion to coracoacrmial arch were 30%, acromial end osteophyte formation was 28%, advanced acromioclavicular joint arthritis and osteophyte formation were 56%, coracoacromial ligament thickening was 24% and no coracoid process inward protrusion to coracoacromial arch. Impingement syndrome combined with rotator cuff tear group abnormalities were clavicular end(40%), acromial end(40%), acromioclavicular joint(20%), coracoacromialligament(20%) and coracoid process abnormality(0%) respectively. Only impingement syndrome group abnormalities were clavicular end(25%), acromial end(31%), acromioclavicular joint(62%), coracoacromial ligament(25%) and coracoid process(0%) respectively. Acromial type I(flat) were 6 cases, type II(curved) were 26 cases and type III(hooked) were 10 cases. We concluded that the most important contributing factors for impingement syndrome was acromial type and second was acromioclavicular joint arthritis and bony spur formation.

  • PDF