• 제목/요약/키워드: curvature identity

검색결과 15건 처리시간 0.024초

THE EXPANSION OF MEAN DISTANCE OF BROWNIAN MOTION ON RIEMANNIAN MANIFOLD

  • Kim, Yoon-Tae;Park, Hyun-Suk;Jeon, Jong-Woo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.37-42
    • /
    • 2003
  • We study the asymptotic expansion in small time of the mean distance of Brownian motion on Riemannian manifolds. We compute the first four terms of the asymptotic expansion of the mean distance by using the decomposition of Laplacian into homogeneous components. This expansion can he expressed in terms of the scalar valued curvature invariants of order 2, 4, 6.

  • PDF

ON SEMI-RIEMANNIAN MANIFOLDS SATISFYING THE SECOND BIANCHI IDENTITY

  • Kwon, Jung-Hwan;Pyo, Yong-Soo;Suh, Young-Jin
    • 대한수학회지
    • /
    • 제40권1호
    • /
    • pp.129-167
    • /
    • 2003
  • In this paper we introduce new notions of Ricci-like tensor and many kind of curvature-like tensors such that concircular, projective, or conformal curvature-like tensors defined on semi-Riemannian manifolds. Moreover, we give some geometric conditions which are equivalent to the Codazzi tensor, the Weyl tensor, or the second Bianchi identity concerned with such kind of curvature-like tensors respectively and also give a generalization of Weyl's Theorem given in [18] and [19].

ON THE ES CURVATURE TENSOR IN g - ESXn

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • 제19권1호
    • /
    • pp.25-32
    • /
    • 2011
  • This paper is a direct continuation of [1]. In this paper we investigate some properties of ES-curvature tensor of g - $ESX_n$, with main emphasis on the derivation of several useful generalized identities involving it. In this subsequent paper, we are concerned with contracted curvature tensors of g - $ESX_n$ and several generalized identities involving them. In particular, we prove the first variation of the generalized Bianchi's identity in g - $ESX_n$, which has a great deal of useful physical applications.

A STUDY ON THE CONTRACTED ES CURVATURE TENSOR IN g-ESXn

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • 제19권4호
    • /
    • pp.381-390
    • /
    • 2011
  • This paper is a direct continuation of [1]. In this paper we derive tensorial representations of contracted ES curvature tensors of $g-ESX_n$ and prove several generalized identities involving them. In particular, a variation of the generalized Bianchi's identity in $g-ESX_n$, which has a great deal of useful physical applications, is proved in Theorem (2.9).

GEOMETRY OF GENERALIZED BERGER-TYPE DEFORMED METRIC ON B-MANIFOLD

  • Abderrahim Zagane
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1281-1298
    • /
    • 2023
  • Let (M2m, 𝜑, g) be a B-manifold. In this paper, we introduce a new class of metric on (M2m, 𝜑, g), obtained by a non-conformal deformation of the metric g, called a generalized Berger-type deformed metric. First we investigate the Levi-Civita connection of this metric. Secondly we characterize the Riemannian curvature, the sectional curvature and the scalar curvature. Finally, we study the proper biharmonicity of the identity map and of a curve on M with respect to a generalized Berger-type deformed metric.

WEAKLY EINSTEIN CRITICAL POINT EQUATION

  • Hwang, Seungsu;Yun, Gabjin
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1087-1094
    • /
    • 2016
  • On a compact n-dimensional manifold M, it has been conjectured that a critical point of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of unit volume, is Einstein. In this paper, after derivng an interesting curvature identity, we show that the conjecture is true in dimension three and four when g is weakly Einstein. In higher dimensional case $n{\geq}5$, we also show that the conjecture is true under an additional Ricci curvature bound. Moreover, we prove that the manifold is isometric to a standard n-sphere when it is n-dimensional weakly Einstein and the kernel of the linearized scalar curvature operator is nontrivial.