• 제목/요약/키워드: current-gain cutoff frequency (fT)

검색결과 16건 처리시간 0.033초

온도변화에 따른 AlGaAs/GaAs HBT의 전류이득 특성 (Current Gain Characteristics of AlGaAs/GaAs HBTs with different Temperatures)

  • 김종규;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.840-843
    • /
    • 2001
  • In this study, temperature dependency of current gain for AlGaAs/GaAs/GaAs HBT is analytically proposed over the temperature range between 300K and 600K. Energy bandgap, effective mass, intrinsic carrier concentration are considered as temperature dependent parameters. Collector current which is numerically calculated is then analytically expressed to enhance the speed of calculation for current gain. From the results, current gain decreases as the temperature increases. These results will be used to expect the unity current gain frequency f$_{T}$ in conjunction with emitter-base and collector- base capacitances.s.

  • PDF

InP의 습식식각특성과 InP/lnGaAs HBT의 제작 (Wet etching charicteristics of InP in InP/InGaAs HBTs and their fabrication)

  • 김강대;박재홍;김용규;황성범;송정근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.77-80
    • /
    • 2002
  • In this paper, InP-based HBTs have been optimally designed by numerical simulation and fabricated by the self-aligned process. The structure of HBT was designed in terms of the current gain*f$_{max}$ for the base and f$_{T}$*f$_{max}$ for the collector. The designed structure produced the current gain of about 50 and the cutoff frequency and the maximum oscillation frequency of 87GHz and 2940Hz respectively. In addition, we present a study of the vertical and lateral etching of InP with the mask sides parallel to the principal crystallographic axes, [0101 and (001). This etching characteristics arc used to fabricate self-aligned HBT structures with reduced parasitic effects.s.s.s.

  • PDF

센서 및 통신 응용 핵심 소재 In0.8Ga0.2As HEMT 소자의 게이트 길이 스케일링 및 주파수 특성 개선 연구 (Gate length scaling behavior and improved frequency characteristics of In0.8Ga0.2As high-electron-mobility transistor, a core device for sensor and communication applications)

  • 조현빈;김대현
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.436-440
    • /
    • 2021
  • The impact of the gate length (Lg) on the DC and high-frequency characteristics of indium-rich In0.8Ga0.2As channel high-electron mobility transistors (HEMTs) on a 3-inch InP substrate was inverstigated. HEMTs with a source-to-drain spacing (LSD) of 0.8 ㎛ with different values of Lg ranging from 1 ㎛ to 19 nm were fabricated, and their DC and RF responses were measured and analyzed in detail. In addition, a T-shaped gate with a gate stem height as high as 200 nm was utilized to minimize the parasitic gate capacitance during device fabrication. The threshold voltage (VT) roll-off behavior against Lg was observed clearly, and the maximum transconductance (gm_max) improved as Lg scaled down to 19 nm. In particular, the device with an Lg of 19 nm with an LSD of 0.8 mm exhibited an excellent combination of DC and RF characteristics, such as a gm_max of 2.5 mS/㎛, On resistance (RON) of 261 Ω·㎛, current-gain cutoff frequency (fT) of 738 GHz, and maximum oscillation frequency (fmax) of 492 GHz. The results indicate that the reduction of Lg to 19 nm improves the DC and RF characteristics of InGaAs HEMTs, and a possible increase in the parasitic capacitance component, associated with T-shap, remains negligible in the device architecture.

$CCI_4$ 를 사용하여 베이스를 탄소도핑한 AlGaAs/GaAs HBT의 제작 및 특성 (Fabrication and Characteristic of C-doped Base AlGaAs/GaAs HBT using Carbontetrachloride $CCI_4$)

  • 손정환;김동욱;홍성철;권영세
    • 전자공학회논문지A
    • /
    • 제30A권12호
    • /
    • pp.51-59
    • /
    • 1993
  • A 4${\times}10^{19}cm^{3}$ carbon-doped base AlGaAs/GaAs HBY was grown using carbontetracholoride(CCl$_4$) by atmospheric pressure MOCVD. Abruptness of emitter-base junction was characterized by SIMS(secondary ion mass spectorscopy) and the doping concentration of base layer was confirmed by DXRD(double crystal X-ray diffractometry). Mesa-type HBTs were fabricated using wet etching and lift-off technique. The base sheet resistance of R$_{sheet}$=550${\Omega}$/square was measured using TLM(transmission line model) method. The fabricated transistor achieved a collector-base junction breakdown voltage of BV$_{CBO}$=25V and a critical collector current density of J$_{O}$=40kA/cm$^2$ at V$_{CE}$=2V. The 50$\times$100$\mu$$^2$ emitter transistor showed a common emitter DC current gain of h$_{FE}$=30 at a collector current density of JS1CT=5kA/cm$^2$ and a base current ideality factor of ηS1EBT=1.4. The high frequency characterization of 5$\times$50$\mu$m$^2$ emitter transistor was carried out by on-wafer S-parameter measurement at 0.1~18.1GHz. Current gain cutoff frequency of f$_{T}$=27GHz and maximum oscillation frequency of f$_{max}$=16GHz were obtained from the measured Sparameter and device parameters of small-signal lumped-element equivalent network were extracted using Libra software. The fabricated HBT was proved to be useful to high speed and power spplications.

  • PDF

Tuner System을 이용한 밀리미터파 탐색기용 W-band MMIC 저잡음 증폭기 (W-band MMIC Low Noise Amplifier for Millimeter-wave Seeker using Tuner System)

  • 안단;김성찬;이진구
    • 대한전자공학회논문지TC
    • /
    • 제48권11호
    • /
    • pp.89-94
    • /
    • 2011
  • 본 논문에서는 밀리미터파 Tuner system을 이용하여 밀리미터파 탐색기에 적용 가능한 W-band MMIC 저잡음 증폭기를 구현하였다. 저잡음 증폭기를 위해 구현된 MHEMT의 측정결과 692mA/mm의 드레인 전류 밀도, 726mS/mm의 최대전달컨덕턴스를 얻었으며, RF 특성으로 전류이득차단주파수는 195GHz, 최대공진주파수는 305GHz의 양호한 성능을 나타내었다. 제작된 W-band 저잡음 증폭기의 측정결과 94GHz에서 7.42dB의 우수한 S21 이득 특성을 얻었으며, 잡음 지수의 측정결과 94.2GHz에서 2.8dB의 잡음 특성을 얻었다.

70 nm nMOS의 RF 적용을 위한 transistor matching (Transistor Matching in 70 nm nMOS for RF applications)

  • 최현식;홍승호;정윤하
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.583-584
    • /
    • 2006
  • This paper presents transistor matching in 70 nm nMOS. To adopt radio frequency(RF) applications, the RF performance, especially the current gain cutoff frequency($f_T$), is examined experimentally through a wafer. It is proved that the RF performance variation of 70 nm nMOS is dependent to the device geometry, the total width(W). The RF performance variation of 70 nm nMOS is inversely proportional to square root of total width(W). Also, decreasing of the number of fingers($N_f$) is helpful to decrease the variation of 70 nm nMOS.

  • PDF

광대역의 우수한 이득평탄도를 갖는 V-밴드 전력증폭기 MMIC (V-Band Power Amplifier MMIC with Excellent Gain-Flatness)

  • 장우진;지홍구;임종원;안호균;김해천;오승엽
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.623-624
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of V-band power amplifier MMIC with excellent gain-flatness for IEEE 802.15.3c WPAN system. The V-band power amplifier was designed using ETRI' $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The gains of the each stages of the amplifier were modified to have broadband characteristics of input/output matching for first and fourth stages and get more gains of edge regions of operating frequency range for second and third stages in order to make the gain-flatness of the amplifier excellently for wide band. The performances of the fabricated 60 GHz power amplifier MMIC are operating frequency of $56.25{\sim}62.25\;GHz$, bandwidth of 6 GHz, small signal gain ($S_{21}$) of $16.5{\sim}17.2\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-16{\sim}-9\;dB$, output reflection coefficient ($S_{22}$) of $-16{\sim}-4\;dB$ and output power ($P_{out}$) of 13 dBm. The chip size of the amplifier MMIC was $3.7{\times}1.4mm^2$.

  • PDF

게이트 레이아웃을 이용한 70nm nMOSFET 초고주파 성능 최적화 (Optimization of 70nm nMOSFET Performance using gate layout)

  • 홍승호;박민상;정성우;강희성;정윤하
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.581-582
    • /
    • 2006
  • In this paper, we investigate three different types of multi-fingered layout nMOSFET devices with varying $W_f$(unit finger width) and $N_f$(number of finger). Using layout modification, we improve $f_T$(current gain cutoff frequency) value of 15GHz without scaling down, and moreover, we decrease $NF_{min}$(minimum noise figure) by 0.23dB at 5GHz. The RF noise can be reduced by increasing $f_T$, choosing proper finger width, and reducing the gate resistance. For the same total gate width using multi-fingered layout, the increase of finger width shows high $f_T$ due to the reduced parasitic capacitance. However, this does not result in low $NF_{min}$ since the gate resistance generating high thermal noise becomes larger under wider finger width. We can obtain good RF characteristics for MOSFETs by using a layout optimization technique.

  • PDF

Performance Optimization Study of FinFETs Considering Parasitic Capacitance and Resistance

  • An, TaeYoon;Choe, KyeongKeun;Kwon, Kee-Won;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.525-536
    • /
    • 2014
  • Recently, the first generation of mass production of FinFET-based microprocessors has begun, and scaling of FinFET transistors is ongoing. Traditional capacitance and resistance models cannot be applied to nonplanar-gate transistors like FinFETs. Although scaling of nanoscale FinFETs may alleviate electrostatic limitations, parasitic capacitances and resistances increase owing to the increasing proximity of the source/drain (S/D) region and metal contact. In this paper, we develop analytical models of parasitic components of FinFETs that employ the raised source/drain structure and metal contact. The accuracy of the proposed model is verified with the results of a 3-D field solver, Raphael. We also investigate the effects of layout changes on the parasitic components and the current-gain cutoff frequency ($f_T$). The optimal FinFET layout design for RF performance is predicted using the proposed analytical models. The proposed analytical model can be implemented as a compact model for accurate circuit simulations.

실리콘-게르마늄 바이시모스 공정에서의 실리콘-게르마늄 이종접합 바이폴라 트랜지스터 열화 현상 (Degradation of the SiGe hetero-junction bipolar transistor in SiGe BiCMOS process)

  • 김상훈;이승윤;박찬우;강진영
    • 한국진공학회지
    • /
    • 제14권1호
    • /
    • pp.29-34
    • /
    • 2005
  • 실리콘-게르마늄 바이시모스(SiGe BiCMOS) 소자 제작시 발생하는 실리콘-게르마늄 이종접합 바이폴라 트랜지스터(SiGe HBT) 열화 현상에 대하여 고찰하였다. 독립적으로 제작된 소자에 비해 SiGe BiCMOS 공정에서의 SiGe HBT소자는 얼리 전압(Early voltage), 콜렉터-에미터 항복전압 및 전류이득등의 DC특성이 열화되고 상당한 크기의 베이스 누설전류가 존재한다는 것을 알 수 있었다. 또한 AC 특성인 차단주파수(f/sub T/) 및 최대 진동주파수(f/sub max/)도 1/2이하로 현저하게 저하되는 것을 확인하였다. 이는 고온의 소오스-드레인 열처리에 의한 붕소의 농도분포 변화가 에미터-베이스 및 콜렉터-베이스 접합 위치에 변화를 주고, 결국 실리콘-게르마늄 내에서의 접합 형성이 이루어지지 않아 전류 이득이 감소하고 기생 장벽이 형성되어서 발생한 현상이다.