• Title/Summary/Keyword: curing performance

Search Result 511, Processing Time 0.023 seconds

A Study on the Effects of Curing Temperature for Compressive Strength of High Performance Concrete (양생온도 변화가 고성능 콘크리트의 압축강도에 미치는 영향에 관한 연구)

  • Ro, In-Cheul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • The object of this study is to define the characteristics of high performance concrete with varing compressive strength of concrete and curing temperature. The major test variables are 1) high strength concrete(500kg/$cm^2$) and ordinary strength concrete(240kg/$cm^2$) compressive strength, 2) curing temperature and condition, 3) concrete curing age, 4) three types of cement. From the test results were shown that curing temperature and curing conditions were also very effective for high strength concrete and ordinary strength concrete, and concrete were largely effected by cement type and temperature during the hydration reaction process. This paper describes the effect of curing temperature for strength and characteristics of high performance concrete.

Performance of self-curing concrete as affected by different curing regimes

  • El-Dieb, A.S.;El-Maaddawy, T.A.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.33-41
    • /
    • 2020
  • In this study, polyethylene glycol (PEG) and polyacrylamide (PAM) have been used as self-curing agents to produce self-curing concrete (SC). Compressive strength, ultrasonic pulse velocity (UPV), bulk electrical resistivity, chloride ion penetrability, water permeability, and main microstructural characteristics were examined under different curing regimes, and compared to those of the control concrete mixture with no self-curing agents. One batch of a control mixture and one batch of a SC mixture were air-cured in the lab to act as non-water-cured samples. The water curing regimes for the control mixture included continuous water curing for 3, 7, and 28 days and periodical moist curing using wetted burlap for 3 and 7 days. Curing regimes for the SC mixtures included 3 days of water curing and periodical moist curing for 3 and 7 days. SC mixtures showed better microstructure development and durability performance than those of the air-cured control mixture. A short water curing period of 3 days significantly improved the performance of the SC mixtures similar to that of the control mixture that was water cured for 28 days. SC concrete represents a step towards sustainable construction due to its lower water demand needed for curing and hence can preserve the limited water resources in many parts of the world.

Experimental comparability between steam and normal curing methods on tensile behavior of RPC

  • Guo, Min;Gao, Ri
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.347-356
    • /
    • 2021
  • To address the limitation of the commonly used steam curing of reactive powder concrete (SC-RPC) in engineering, a preparation technology of normal curing reactive powder concrete (NC-RPC) is proposed. In this study, an experimental comparative research on the mechanical properties of NC-RPC and SC-RPC under uniaxial tension is conducted. Under the premise of giving full play to the ultra-high performance of RPC, the paper tries to explore whether normal curing can replace steam curing. The results show that various mechanical indexes of NC-RPC (e.g., tensile strength, ultimate tensile strain, elastic modulus and deformation performance) could basically reach the mechanical index values in steam curing at 28d age, some performance is even better at a longer age. So it affirms the feasibility of normal curing. In this paper, the influence of normal curing age on the tensile properties of RPC is discussed, and the relationship between each index and age is introduced in detail. Based on the experimental data, the tensile mechanism of RPC is analyzed theoretically, and two kinds of tensile constitutive models for RPC are proposed, one is curvilinear model, and another one is polygonal line model. The validity of the two models is further verified by the test results of others.

Evaluation for Performance According to Curing Method of Polymer- Modified Mortars (폴리머 시멘트 모르타르의 양생방법에 따른 물성 평가)

  • Park, Hun-Il;Ryu, Byung-Cheoll;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.273-276
    • /
    • 2005
  • Polymer-modified mortar was developed for improving the performance of modified mortar which is mixed with polymer, and it is used for protecting and repairing materials of building because of their excellent performance to improve characteristics which are compressive strength, flexural strength, and adhesive strength. However, the performances of the polymer-modified mortars are highly affected by materials, which are polymer, mortar, and aggregates, and conditions which are curing environment and testing method. Furthermore, dry curing method after hydrated curing has been recommended to make strong polymer film for the best curing method to make excellent characteristics. In this report, We investigated the co-relation between curing methods and the characteristics, which are compressive strength, flexural strength, and adhesive strength for the polymer-modified mortars that are used in the domestic area.

  • PDF

Evaluation of Asphalt Emulsions Curing and Adhesive Behavior used in Asphalt Pavement Preservation (Surface Treatments) (아스팔트 도로포장 유지보수(표면처리)용 유화아스팔트의 양생 및 점착거동특성 평가)

  • Im, Jeong Hyuk;Kim, Y. Richard
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.39-50
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the curing and adhesive behavior of asphalt emulsions including polymer-modified emulsions for chip seals and fog seals. METHODS : For the laboratory testing, the evaporation test, the bitumen bond strength (BBS) test, and the Vialit test are used. Also, the rolling ball test and the damping test are employed to evaluate the curing properties of the fog seal emulsions. In order to conduct all the tests in controled condition, all test procedures are performed in the environmental chamber. The CRS-2L and the SBS CRS-2P emulsions are used as a polymer-modified emulsion, and then unmodified emulsion, the CRS-2, is compared for the evaluation of chip seal performance. For the fog seal performance evaluation, two types of polymer-modified emulsions (FPME-1 and FPME-2) and one of unmodified emulsion, the CSS-1H, are employed. All the tests are performed at different curing times and temperatures. RESULTS AND CONCLUSIONS : Overall, PMEs show better curing and adhesive behavior than non-PMEs regardless of treatments types. Especially, the curing and adhesive behavior of PMEs is much better than non-PMEs before 120 minutes of curing time. Since all the test results indicate that after 120 minutes of curing time the curing adhesive behavior of emulsions, the early curing time, i.e., 120 minutes, plays an important role in the performance of chip seals and fog seals.

A Study on Copper hydroxide affecting the Curing and the Corrosion resistance of Electrocoating (수산화구리가 전착도막의 경화성과 내식성에 미치는 영향)

  • Yang, Wonseog;Hwang, Woonsuk
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.253-258
    • /
    • 2013
  • Effects of copper hydroxide(II) on the curing and the corrosion resistance of electrocoating were investigated by MEK rubbing test, electrochemical impedance spectroscopy (EIS) and Thermo-gravimetric analysis (TGA). Curing performance of electrocoating was lowered with increasing the content of copper hydroxide(II) as evidenced by the MEK rub performance which decreased with increasing the content of copper hydroxide(II). This indicates copper hydroxide(II) affected the blocked isocyanate reaction in the coatings, by the decomposition of copper hydroxide(II) to CuO and $H_2O$ during reaction of isocyanate with nuclephiles. Corrosion resistance of coatings also decreased with the content of copper hydroxide. This reflects the higher barrier property in coatings with higher curing performance.

Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements (스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구)

  • Yoo, Tae Seok;Ryu, SungWoo;Kim, Jin Cheol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.

A Study on the Improvement of Thermal Curing Performance of Concrete Using Hot Air Blower (열풍기 이용 콘크리트 보온양생 성능 개선 방안 분석)

  • Choi, Ji-Su;Kim, Sang-Yeop;Song, Jin-Hee;Cho, Hong-Beom;Rhee, Kyu-Nam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.239-240
    • /
    • 2022
  • In winter, low outdoor temperature can casue reduction of concrete strength. Therefore, thermal protection is required when curing concrete in winter to maintain a certain level or higher surface temperature. Accordingly, in domestic construction sites, a curing method in which surrounds casting areas by tents and operates hot air blowers are widely applied. However, local low-temperature areas may occur due to airtightness of the curing tents. If additional heat is supplied to prevent occurrence of local low-temperature areas, energy consumption increases. Therefore in this study, a plan for improvement method of concrete curing was considered and the performance was evaluated through numerical analysis. A plan to improve the airtightness of the wall opening was applied, but the analysis showed that if only a part of the curing area is shielded, the temperature of the unshielded area decreases,making it inappropriate to improve curing performance.

  • PDF

Effect of Steam Curing on Concrete Piles with Silica Fume

  • Yazdani, N.;F. Asce, M. Filsaime;Manzur, T.
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Silica fume is a common addition to high performance concrete mix designs. The use of silica fume in concrete leads to increased water demand. For this reason, Florida Department of Transportation (FDOT) allows only a 72-hour continuous moist cure process for concrete containing silica fume. Accelerated curing has been shown to be effective in producing high-performance characteristics at early ages in silica-fume concrete. However, the heat greatly increases the moisture loss from exposed surfaces, which may cause shrinkage problems. An experimental study was undertaken to determine the feasibility of steam curing of FDOT concrete with silica fume in order to reduce precast turnaround time. Various steam curing durations were utilized with full-scale precast prestressed pile specimens. The concrete compressive strength and shrinkage were determined for various durations of steam curing. Results indicate that steam cured silica fume concrete met all FDOT requirements for the 12, 18 and 24 hours of curing periods. No shrinkage cracking was observed in any samples up to one year age. It was recommended that FDOT allow the 12 hour steam curing for concrete with silica fume.

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.