• Title/Summary/Keyword: cure temperature

Search Result 301, Processing Time 0.019 seconds

Study on Heat Resistance Anaerobic Adhesive Which Expands When Post Cured

  • Zhai, Haichao;Li, Yinbai;Lin, Xinsong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.1
    • /
    • pp.9-12
    • /
    • 2002
  • In this paper, N,N-m-phenyenedimaleimide (m-PDM), Polyamide Resin (PI) and Metallic dimethacrylate etc. influencing the heat resistance of anaerobic adhesive has been studied, an anaerobic adhesive composition capable of post-cure expansion and $230^{\circ}C$ temperature resistance comprising a multifunctional methacrylate and m-PDM capable of effectuating expansion upon post-cure has been developed. A homogeneous mixture of a monomer and m-PDM are subjected to a first cure heat stage (Room Temperature) wherein a rigid partially-cured plastic is formed and a post-cure heat stage ($150^{\circ}C$) to effectuate permanent expansion of cured adhesive composition.

  • PDF

Dielectric Cure Monitoring of Thermosetting Matrix Composites (열경화성 수지 복합재료의 유전 정화 모니터링)

  • Kim, Hyoung-Geun;Lee, Dai-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.409-417
    • /
    • 2003
  • Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites.

Study of Cure Behavior of the External and Internal of Composite Parts (경화공정에 따른 복합재 부품 외부와 내부의 경화 거동 차이에 대한 연구)

  • Hyun, Dong Keun;Lee, Dong Seung;Shin, Do Hoon;Kim, Ji Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.302-308
    • /
    • 2020
  • We measured the thermal conductivity of composite materials manufactured by the autoclave and vacuum bag only processes and predicted the cure behavior of the external and internal of composite parts with a cure kinetics model. The temperature difference between the external and internal depends on the processes because of the change of thermal conductivity. In the autoclave process, the temperature and cure behavior of the internal were similar to those of the external because of the high thermal conductivity. However, the temperature of the internal of the vacuum bag only process was different from that of the external. The difference can influence the part quality and evacuation of air. Compression tests were performed to find the mechanical property using 0° unidirectional specimens. The composite of the vacuum bag only process was found to have a lower compressive strength than that of the autoclave process.

Dielectric Changes During the Curing of Epoxy Resin Based on the Diglcidyl Ether of Bisphenol A (DGEBA) with Diamine

  • 김홍경;차국헌
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1329-1334
    • /
    • 1999
  • The curing characteristics of diglycidyl ether of bisphenol A (DGEBA) with diaminodiphenylmethane (DDM) as a curing agent were studied using differential scanning calorimetry (DSC), rheometrics mechanical spectrometry (RMS), and dielectric analysis (DEA). The isothermal curing kinetics measured by DSC were well represented with the generalized auto-catalytic reaction model. With the temperature sweep, the inverse relationship between complex viscosity measured by RMS and ionic conductivity obtained from DEA was established indicating that the mobility of free ions represented by the ionic conductivity in DEA measurement and the chain segment motion as revealed by the complex viscosity measured from RMS are equivalent. From isothermal curing measurements at several different temperatures, the ionic conductivity contribution was shown to be dominant in the dielectric loss factor at the early stage of cure. The contribution of the dipole relaxation in dielectric loss factor became larger as the curing further proceeded. The critical degrees of cure, at which the dipolar contribution in the dielectric loss factor starts to appear, increases as isothermal curing temperature is increased. The dielectric relaxation time at the same degree of cure was shorter for a sample cured at higher curing temperature.

Simultaneous Measurement of Strain and Temperature During and After Cure of Unsymmetric Composite Laminate Using Fiber Optic Sensors (비대칭 복합적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 측정)

  • 강동훈;강현규;김대현;방형준;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.244-249
    • /
    • 2001
  • In this paper, we present the simultaneous measurement of the fabricaition strain and temperature during and after cure of unsymmetric composite laminate uising fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPl) hybrid sensors are used to measure those measurands. The characteristic matrix of sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilized as a light source. FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate at different direction and different location. We perform the real time measurement of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

  • PDF

Cure Kinetics of DGEBA/MDA/SN/HQ Thermosetting Matrix (열경화성 DGEBA/MDA/SN/HQ 매트릭스의 경화반응 속도)

  • Lee, Jae-Yeong;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.667-672
    • /
    • 1995
  • Cure kinetics of DGEBA(diglycidyl ether of bisphenol A)/MDA(4, 4'-methylene dianiline)/SN(succinonitrile) system and DGEBA/MDA/SN/HQ(hydroquinone) system was studied by Kissinger equation and Fractional life method through DSC in the temperature range of 85∼150$^{\circ}C$. As cure temperature was increased, reaction rate increased and reaction order was almost constant. The reaction rate of the system with HQ as a catalyst was more higher and activation energy of that was lower about 20% than those of the system without HQ. Starting temperature of cure reaction for DGEBA/MDA/SN/HQ system decreased about 30$^{\circ}C$ than that of DGEBA/MDA/SN system.

  • PDF

Studies on Cure Behavior and Thermal Stability of Epoxy/PMR-15 Polyimide Blend System (에폭시/PMR-15 폴리이미드 블렌드계의 경화동력학 및 열안정성에 관한 연구)

  • Lee, Jae-Rock;Lee, Hwa-Young;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.265-268
    • /
    • 2002
  • In this work, the blend system of epoxy and PMR-15 polyimide is investigated in terms of the cure behaviors and thermal stabilities. The cure behaviors are studied in DSC measurements and thermal stabilities are also carried out by TGA analysis. DDM (4, 4'-diamino diphenyl methane) is used as curing agent for EP and the content of PMR-15 is varied within 0, 5, 10, 35, and 20 phr to neat EP. As a result, the cure activation energy ($E_a$) is increased at 10 phr of PMR-15, compared with that of neat EP. From the TGA results of EP/PMR-15 blend system, the thermal stabilities based in the initial decomposed temperature (IDT) and integral procedural decomposition temperature (IPDT) are increased with increasing the PMR-15 content. The fracture toughness, measured in the context of critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$), shows a similar behavior with $E_a$. This result is probably due to the crosslinking developed by the interactions between intermolecules in the polymer chains.

  • PDF

Autocatalytic Cure Kinetics of DGEBA/MDA/PGE-AcAm System (DGEBA/MDA/PGE-AcAm계의 자촉매 반응 속도론)

  • Lee, Jae-Yeong;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.797-801
    • /
    • 1998
  • The cure kinetics for diglycidyl ether of bisphenol A(DGEBA)/4, 4'-methylene dianiline(MDA) system with or without lOphr of phenyl glycidyl ether(PGE)-acetamide(AcAm) was studied by autocatalytic cure expression. On the dynamic DSC curves, the exothermic peak temperature and the onset temperature of reaction decreased with the addition of PGE-AcAm. Regardless of the addition of PGE-AcAm, the shape of the conversion curve showed sigmoid, and this meant that DGEBA/MDA and DGEBA/MDA/PGE-AcAm systems followed autocatalytic cure reaction. When PGE-AcAm was added to DGEBA/MDA system, the cure rate increased about 1.2~1.4 times due to the catalytic role of hydroxyl groups in PGE-AcAm.

  • PDF

Influence of the Cure Systems on Long Time Thermal Aging Behaviors of NR Composites

  • Choi, Sung-Seen;Kim, Jong-Chul;Lee, Seung-Goo;Joo, Yong-L.
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.561-566
    • /
    • 2008
  • NR composites with different curing systems were aged thermally at 60, 70, 80, and $90^{\circ}C$ for 2-185 days in a convection oven, and the changes in the crosslink density were investigated as a function of the accelerated thermal aging. The overall crosslink densities increased with increasing aging time irrespective of the aging temperatures and curing systems. The changes in crosslink density were enhanced by increasing the aging temperature. The degree of the increased crosslink density was in the following order: "the conventional cure system > the semi-EV system > the EV system". For short term thermal aging, the change in crosslink density with the aging time was complicated, particularly for low temperature aging. The activation energies of the change in crosslink density with thermal aging using the conventional and semi-EV cure systems increased and then remained relatively constant with increasing aging time, whereas that of the specimen with an EV cure system tended to increase linearly. The experimental results were explained by the dissociation of the existing polysulfidic linkages and the formation of new cross links through the crosslinking-related chemicals remaining in the sample.

Thermal Stability and Cure Behavior of Waterborne Phenol-Formaldehyde Resin (수용성 페놀-포름알데히드 수지의 열안정성 및 경화거동)

  • Yoon, Sung Bong;Kim, Jin Woo;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.7 no.1
    • /
    • pp.16-22
    • /
    • 2006
  • In this work, the effect of cure temperature and time on the thermal stability and the exothermic cure reaction peak of a waterborne resol-type phenol-formaldehyde resin, which may be used for preparing phenolic sheet molding compounds (SMC), has been investigated using a thermogravimetric analyzer and a differential scanning calorimeter. The weight loss of waterborne phenol-formaldehyde resin was mainly occurred at three temperature stages: near $200^{\circ}C,\;400^{\circ}C$, and $500^{\circ}C$. The carbon yield at $750^{\circ}C$ for the cured resin was about 62%~65%. Their thermal stability increased with increasing cure temperature and time. Upon cure, the exothermic reaction was taken placed in the range of $120^{\circ}C{\sim}190^{\circ}C$ and the maximum peak was found in between $165^{\circ}C$ and $170^{\circ}C$. The shape and the maximum of the exothermic curves depended on the given cure temperature and time. To remove $H_2O$ and volatile components, the uncured resin needed a heat-treatment at $100^{\circ}C$ for 60 min at least prior to cure or molding. Curing at $130^{\circ}C$ for 120 min made the exothermic peak of waterborne phenol-formaldehyde resin completely disappeared. And, post-curing at $180^{\circ}C$ for 60 min further improved the thermal stability of the cured resin.

  • PDF