• 제목/요약/키워드: cultured human gingival fibroblast

검색결과 51건 처리시간 0.032초

Anti-Inflammatory action and Cellular Toxicity of Resina Pini on Human Gingival Fibroblast

  • Suk, Kui-Duk;Suh, Young-Ah;Chang, Su-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.157.1-157.1
    • /
    • 2003
  • This study was carried out to evaluate the cytotoxicity and anti-inflammatory effects of Resina Pini on cultured human gingival fibloblasts. We carried out a study of cytotoxic effects of Resina Pini on cultured cells by MTT assay. Various treatments on Resina Pini reduced its toxicity on cultured cells in order of natural Resina Pini, water extracted mixture of Resina Pini and Ramus Mori Albae and recrystalized Resina Pini. However, Resina Pini showed harmless levels of cytotoxicity to cultured human gingival fibroblast. (omitted)

  • PDF

PDGF 함유매개체로서 탈회된 치근면의 효과 (The Effect of decalcified Root Surface as PDGF Carrier)

  • 우효상;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제26권4호
    • /
    • pp.889-905
    • /
    • 1996
  • It is known that growth factors function as potent biologic mediators regulating numerous activities of wound healing via cell proliferation, migration and extracellular matrix formation and they also promote periodontal regeneration. But, method of growth factor application is controversial yet. So purpose of this study is to evaluate the effect of demineralized root surface as one of method of growth factor application. The ginigival fibroblasts were primary cultured and fifth or sixth subpassages were used in these experiments. In first experiment, root surface blocks demineralized with 100mg/ml tetracycline for 5 minutes and pH 1 citric acid for 3 minutes(experimental groups) and nonteminerilized root surface blocks (control groups) were placed in 100ng/ml PDGF-BB for 5 minutes. Then the cells were seeded on each root surface blocks and cultured for 6, 24, 48, 72 hours. In second experiment, root surface blocks deminerilized with tetracycline and citric acid and nondemineralized root surface blocks were placed in 200ng/ml PDGF-BB for 5 minutes and another non-demineralized root surfcae blocks were placed in DMEM without PDGF-BB. At 1, 2, 4, 6, 8 days, the cells were seeded in 24-well plate and using of each eluent, cultured for 72 hours. The results of the four determinants were presented as mean and S.D.. The results were as follows : The attachment and proliferation of human gingival fibroblast on root surface were more increased when PDGF-BB was applicated on root surfrace demineralized with tetracycline or citric acid than non-demineralized root surface. And, in comparision tetracycline with citric acid, there were more attachment and proliferation of human gingival fibroblast on root surface demineralized with tetracycline than citric acid, and proliferation of human gingival fibroblast on demineralized root surface was increased time dependently 1 day to 3 days. In second experiment using eluent, proliferation of human gingival fibroblast was more increased to 6 days when human gingival fibroblast was cultured in eluent that PDGF-BB was applicated on demineralized root surface than two control groups, and degree of proliferation was decreased time dependently 1 day to 6 days. Proliferation of human gingival fibroblast cultured in eluent without PDGF-BB was constant 1 day to 6 days. After 6 days, degree of proliferation of human gingival fibroblast was similar in four groups. This means that release duration of PDGF-BB from demineralized root surface is 6 days. And in comparision tetracycline with citric acid, there was more proliferation of human gingival fibroblast in tetracycline-treated group than citric acid. In conclusion, demineralized root surface as primary site for PDGF-BB application, especially demineralized with tetracycline has important roles in attachment and proliferation of human gingival fibroblast, and may be useful clinical applications in periodontal regenerative procedures.

  • PDF

PDGF와 $TGF-{\beta}1$이 배양 인체 치은 섬유모세포와 치주인대세포의 활성에 미치는 영향 (EFFECT OF PDGF AND $TGF-{\beta}1$ ON CELL ACTIVITY OF HUMAN GINGIVAL FIBROBLAST AND PERIODONTAL LIGAM ENT CELL IN VITRO)

  • 정순규;남궁혁;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제25권1호
    • /
    • pp.133-145
    • /
    • 1995
  • The migration and proliferation of periodontal ligament cells are desired goal of periodontal regeneration therapy. PDGF and $TGF-{\beta}1$ are well known to regulate the cell activity of mesenchymal origin cell. The purpose of this study was to determine the effects of these growth factors on human gingival fibroblast and periodontal ligament cell actvity, and to identify the regulatory effect of $TGF-{\beta}1$ on the response to PDGF by MIT assay. Human gingival fibroblast and periodontal ligament cells were cultured from extracted teeth for non-periodontal reason. Cultured human gingival fibroblast and periodontal ligament cells in vitro were treated with polyperpetide growth factor PDGF and $TGF-{\beta}1$ in both a dose and time - dependent manner. Cell morphology were determined by inverted microscope and cell acitivity were determined by MIT assay. The result of this study demonstrated that PDGF and $TGF-{\beta}1$ were not changed the morphology of these cell compared with control group. PDGF or $TGF-{\beta}1$ increased cell activity of periodontal ligament cell in dose and time dependent manner but gingival fibroblast were decreased to the level of control group at third day. Additionally, incubation with $TGF-{\beta}1$ addition to PDGF resulted in a enhanced cell activity of PDGF. Therefore, cell acitivty of gingival fibroblast were not changed compared with control group. This stiudy demonstrates that PDGF and $TGF-{\beta}1$ are major mitogens for human periodontal ligament cell in vitro, and $TGF-{\beta}1$ is a regulator of cell activity to PDGF in human gingival fibroblast and periodontal ligament cell.

  • PDF

인체 치은섬유모세포에서 Lipopolysaccharides, Ursolic acid와 Oleanolic acid에 의한 Phenytoin 유도 세포활성에 미치는 영향 (EFFECTS OF LIPOPOLYSACCHARIDES, URSOLIC ACID AND OLEANOLIC ANCID ON PHENYTOIN-INDUCED CELL ACTIVITY IN HUMAN GINGIVAL FIBROBLAST)

  • 권오달;김윤성;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제24권1호
    • /
    • pp.98-108
    • /
    • 1994
  • Gingival hyperplasia is frequently associated with the long-term use of phenytoin for control of convulsive disorder. The purpose of this study was to investigate on the effects of lipopolysaccharides (LPS), ursolic acid and oleanolic acid to phenytoin-induced cell activity in human gingival fibroblast. Human gingival fibroblasts were cultured form the healthy gingiva of orthodontic patients. Gingival fibroblasts were trypsinized and transferred to the weels of microtest plates. Fibroblast were cultured in growth medium added $5{\mu}g/ml$ of phenytoin, $5{\mu}g/ml$ of LPS, $10^{-7}M$ of ursolic acid and oleanolic acid. The passage number of cultured fibroblasts were fifth and eight. Cell morphology was examined by inverted microscope and the cell activity was measured by proliferation assay. Ursolic acid significantly modulated cell morphology into globular shape at the concentrantion of $10^{-7}M$ in the presence of phenytoin and LPS, and the cell activity was significantl decreased by ursolic acid or oleanolic acid regardless of the presence of phenytoin and LPS. These results suggested that the increased phenytoin-induced cell activity might be modulated by ursolic acid regardless of the presence of phenytoin and LPS. These results suggested that the increased phenytoin-induced cell activity might be modulated by ursolic acid or oleanolic acid. Further study is needed to clarify their toxicological effects on cellular modulation and mRNA expression change.

  • PDF

Chlorhexidine과 Listerine이 인체 치은 섬유모세포의 활성화에 미치는 영향 (EFFECTS OF CHLORHEXIDINE AND L1STERINE ON CELL ACTIVITY OF HUMAN GINGIVAL FIBROBLAST IN VITRO)

  • 강정구;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제25권1호
    • /
    • pp.1-13
    • /
    • 1995
  • Chlorhexidine and Listerine are widely used in dentistry due to its effectiveness on plaque control and bactericidal action. The effects of these agent on chronic gingivitis and wound healing following surgical periodontal therapy in human has been favorable. Understanding the effects of chlorhexidine and Listerine on human gingival fibroblast will provide the rationale for its use during the healing process of periodontal surgery. The purpose of this study was to compare the effects of chlorhexidine and Listerine on human gingival fibroblast. Human gingival fibroblasts were cultured from the healthy gingiva on the extracted premolar of orthodontic patients. Human gingival fibroblast were trypsinized and cultured in growth medium added range of 0.0012-0.12% chlorhexidine and 1-100% Listerine mouth wash solution. The cell used in this study were between fifth to eighth passage number. The cell morphology were examined by inverted microscope and the cell activity were measured by MIT assay. The Morphology of gingival fibroblast added Chlorhexidine and Listerine at the concentration of all range were became globular and lost their cytoplasmic process. Our results indicate that a 0.0012 concentration of chlorhexidine and 1% concentration of Listerine were shows minimal cytotoxicity, but above these concentraion, there was a significant difference between the cell activity in the experimental group and control group(p

  • PDF

Nifedipine이 인체 치은섬유모세포의 세포활성에 미치는 효과 (THE EFFECTS OF NIFEDIPINE ON THE ACTIVITY OF HUMAN GINGIVAL FIBROBLAST)

  • 최종길;김재현;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제23권3호
    • /
    • pp.622-634
    • /
    • 1993
  • Gingiva is remarkly sensitive to certain drugs. Especially, long term use of phentoin, dihydropyrydine (including nifedipine), cyclosporin and other drugs can be lead to pathologic changes in gingival tissue, especially in terms of proliferation of epithelium and connective tissue. Recent study in terms of proliferation of epithelium and connective tissue. Recent study is focused on the inhibition of drug-induced gingival hyperplasia by using medicaments. The purpose of this study was to investigate on the pharmacological effects of nifedipine, retinoic acid and glycyrrhetini acid to the activity in human gingival fibroblast. Human gingival fibroblasts were cultured from the healthy gingiva of orthodontic patients. Gingival fibroblasts were trypsinized and cultured in growth medium added $5{\mu}g/ml$ of nifedipine, $10^{+7}M$ of retinoic acid and glycyrrhetinic acid. The passage number of cultured fibroblasts were between fifth and eighth. The cell morphology was examined by inverted microscope and the cell acitivity was measured by the MTT assay. Nifedipine at the concentration of $5{\mu}g/ml$ was revealed significantly effective to increase the cell activity and lipopolysaccharide was cofactor to increase cell activity in the presence of nifedipine. However, retinoic acid was significantly effective on the globular change of cell morphology and loss of cell process regardless of the presence of nifedipine and LPS. Cell activity was significantly decreased by the glycyrrhetinic acid at the concentration of $10^-M$ regardless of the presence of nifedipine and LPS. These results suggested that the increased cell activity by nifedipine might be modulated by retinoic acid and glycyrrhetinic acid. Further study is needed to clarify on their toxicological effects during cellular modulation and mRNA expression change.

  • PDF

치주인대세포 및 치은섬유아세포의 DNA 합성능에 대한 b-Fibroblast growth factor의 영향 (The Effect of the Basic Fibroblast Growth Factor on Proliferation Rate of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts)

  • 조영준;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제26권2호
    • /
    • pp.414-428
    • /
    • 1996
  • The use of basic fibroblast growth factor which function as potent biologic mediators regulating numerous activities of wound healing has been suggested for the promotion of periodontal regeneration. The mitogenic effects of basic fibroblast growth factor on human periodontal ligament cells and human gingival fibroblasts were evaluated by determining the incorporation of 5-Bromo-2'deoxy-uridine into DNA of the cells in a dose -dependent manner. The cells which were prepared were the primary cultured gingival fibroblasts and periodontal ligament cells from human the fourth or sixth subpassages were used in the experiments. The cells which were seeded DMEM contain 10% FBS. The added concentrations of basic fibroblast growth factor were 0.1, 1, 10, 50, $l00{\eta}g/ml$ and basic fibroblast growth factor were added to the quiescent cells for 24 hours, 48 hours and 72 hours. They were labeled with $10{\mu}l/200{\mu}l$ 5Bromo-2'-deoxy-uridine for the last 6 hours of each culture. The results of the five determinants were presented as mean and S.D.. The results were as follows. : The DNA synthetic activity of human gingival fibroblasts was increased dose dependently by basic fibroblast growth factor at 24 hours, 48 hours and 72 hours. The similar mitogenic effects were at the 24 and 48 hours of basic fibroblast growth factor, but the DNA synthetic activity of human gingival fibroblasts generally decreased at 72 hours. The DNA synthetic activity of human periodontal ligament cells was increased dose dependently to $50{\eta}g/ml$ by basic fibroblast growth factor at 24, 48 and 72 hours, but the DNA synthetic activity decreased at $l00{\eta}g/ml$ of each hour. Generally the maximum mitogenic effects were at the 48 hours application of basic fibroblast growth factor. The DNA synthetic activity of human periodontal ligament cells generally decreased lower at 72 hours than at 24, 48 hours the application of basic fibroblast growth factor. In the comparison of DNA synthetic activity between human gingival fibroblasts and human periodontal ligament cells, human periodontal ligament cells had slightly higher proliferation activity than human gingival fibroblasts for a longer time at the high dosage of the basic fibroblast growth factor.In conclusion, basic fibroblast growth factor have important roles in the stimulation of DNA synthesis in human periodontal ligament cells and human gingival fibroblasts, and thus may be useful for clinical applications in periodontal regenerative procedures.

  • PDF

옥수수 불검화 추출물(Zea Mays L.)과 후박(Magnoliae cortex) 추출물 혼합물의 치주질환원인균에 대한 항균작용 및 치은섬유아세포 활성도에 미치는 영향 (Antimicorbial effect of Zea Mays L. and Magnoliae cortex extract mixtures on periodontal pathogen and effect on human gingival fibroblast cellular activity)

  • 김태일;최은정;정종평;한수부;구영
    • Journal of Periodontal and Implant Science
    • /
    • 제32권1호
    • /
    • pp.249-255
    • /
    • 2002
  • Zea Mays L. has been known to be effective for improving tissue health and Magnoliae cortex to have effective antibacterial and antimicrobial activity against pathogenic microbes. The purpose of this study was to examine the antimicrobial effects of Zea Mays L. and Magnoliae cortex extract mixtures on periodontal pathogens(Prevotella intermedia, Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans )and to examine the effects on human gingival fibroblast cellular activity. Zea Mays L. and Magnoliae cortex extracts and their mixtures were prepared with various mixing ratios (0.5:1, 1:1, 1.5:1, 2:1). These extracts were loaded to periodontal pathogen cultured petri dish for antimicrobial test and also loaded to cultured human gingival fibroblast for cellular activity test. Each test was repeated 3 times and data were analyzed by one-way ANOVA with 95% confidence level. Mixture of these two extracts showed greater amount of inhibition area on periodontal pathogen and more improved gingival fibroblast activity as Zea Mays L. ratio reduced. So, mixture ratio 0.5:1 (Zea Mays L. : Magnoliae cortex) group showed statistical significance in antimicrobial activity and cellular activity among various mixtures(p < 0.05). In conclusion, 0.5:1 (Zea Mays L. : Magnoliae cortex) mixture possessed best gingival fibroblast cellular activity and antimicrobial activity toward periodontal pathogens.

Glycyrrhetinic acid와 oleanolic acid가 배양 치은 섬유모세포의 cyclosporine A 유도 세포활성에 미치는 영향 (THE EFFECTS OF GLYCYRRHETINIC ACID AND OLEANOLIC ACID TO CYCLOSPORINE A INDUCED CELL ACTIVITY OF CULTURED GINGIVAL FIBROBLASTS)

  • 김영욱;김재현;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제24권2호
    • /
    • pp.238-254
    • /
    • 1994
  • Cyclosporine A is an immunosuppressant commonly used for patients receiving organ transplants. Gingival overgrowth is an adverse side-effect seen in about 8-26% of patients taking cyclosporine A which have been shown to increase the DNA synthesis of gingival fibroblast at the concentration of $10^{-9}g/ml$ in vitro. Glycyrrhetinic acid is the active pharmacological ingredients of licorice which exerts steroid-like action and anti-viral activity. Oleanolic acid, which were isolated from Glechoma hederacea, has been shown to act as inhibitors of tumor promotion in vivo and to be less cytotoxic retinoic acid. This study has been performed to evaluate the effects of glycyrrhetinic acid and oleanolic acid on cyclosporine A induced cell activity in vitro. Human gingival fibroblasts were isolated from explant cultures of healthy gingiva of orthodontic patients. Gingival fibroblasts were trypsinized and transferred to the walls of microtest plates. Fibroblasts were cultured in growth medium added $10^{-9}g/ml$ cyclosporineA and $50{\mu}l/ml$ lipopolysaccharides. Cells between the 4th and 6th transfer in culture were used for this study. The morphology of gingival fibroblst were examined by inverted microscope. The effects of cyclosporine A on the time course of DNA sythesis by human gingival fibroblasts were assessed by $[^3H]-thymidine$ uptake assays. Cyclosporine A was found to stimulate DNA synthesis of human gingival fibroblast at a concentration of $10^{-9}g/ml$. In the presence of lipopolysaccharide derived from Fusobacterium nucleatum, addition of cyclosporine A results in reversal of inhibition at the concentration which normally inhibits gingival fibroblast proliferation. The cell acitivities in the presence of glycyrrhetinic acid and oleanolic acid were decreased, and increased cell acitivities by cyclosporine A were decreased by glycyrrhetinic acid and oleanolic acid at the concentration of $200{\mu}g/ml$. These results suggested that the increased cell activities by cyclosporine A modulated by glycyrrhetinic acid and oleanolic acid.

  • PDF

황련과 Centella asiatica 추출물이 치은 섬유모세포에 미치는 영향 (The effect of Rhizoma coptidis and Centella asiatica extracts on human gingival fibroblasts)

  • 유형근
    • Journal of Periodontal and Implant Science
    • /
    • 제26권3호
    • /
    • pp.681-688
    • /
    • 1996
  • Periodontal regeneration requires the migration and proliferation of gingival fibroblasts and periodontal ligament cells. These cellular events are influenced and regulated by growth factors and some drugs. The purpose of this study is to examine the effect of Rhizoma coptidis and Centella asiatica extracts on human gingival fibroblasts. Gingival fibroblasts were primarily cultured from extracted premolar with non-periodontal diseases. Cells were cultured with ${\alpha}-MEM$ at $37^{\circ}C$, 5% $CO_2$, 100% humidity incubator for 2 or 3 days, as a measure of cell proliferation potential, it was examined that the DNA synthesis using $[^3H]-thyrnidine$ incorporation, the cell numbers (with or without dye), and cell viabilities. Rhizoma coptidis is increased the proliferation of gingival fibroblasts at concentration of $10^{-9}g/ml$, but Centella asiatica is decreased the proliferation at all concentrations. This study demonstrated that Rhizoma coptidis is a potential mitogen for human gingival fibroblasts in vitro, and we can expect the usefulness of this drug in periodontal regeneration.

  • PDF