• Title/Summary/Keyword: culturable bacteria

Search Result 78, Processing Time 0.027 seconds

Composition and Structure of Marine Benthic Community Regarding Conditions of Chronic Barbour Pollution

  • Fadeeva, N.P.;Bezverbnaja, I.P.;Tazaki, Kazue;Watanabe, Hiroaki;Fadeev, V.I.
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.21-30
    • /
    • 2003
  • Seasonal fluctuations of physico-chemical and biological aspects of the environment were studied in Vladivostok harbour (Golden Horn Bay, the East Sea/Sea of Japan). The benthic community structure was described with a focus on size-spectra (bacteria, meio- and macrofauna) related with the chemical environment and chemical fluxes in sediment and to reveal their possible ecological role in the process of bioremediation of the environment. Samples from two sites with different concentrations of heavy metals (Fe, Zn, Cu, Pb, Mn, Cr, Ni Cd, Co) and petroleum hydrocarbon were assessed by a number of methods. These included plate counts of culturable bacteria, observation through a scanning electron (SEM) and transmission electron microscope (TEM). These approaches were complemented with microscopic assessments of the diversity of the benthic community. The specific communities had a limited number of species, tolerant to abnormally high levels of toxic compounds. The dominant species were presented by several sho.1-lived small polychaetes (Capitella capitata) and nematodes (Oncholaimium ramosum). The highest population density was recorded in microbenthos, in various diatoms, various physiological groups of bacteria which participate in biomineralization: marine heterotrophic bacteria, which oxidized oil, black oil in addition to groups resistant to heavy metals. They have the entire set of mechanisms for neutralizing the negative effect of those compounds, forming the detrital food web and biogeochemical circulation of material in sediments, which results in the biological self-recycling of sea basins. Macro- and meiobenthic organisms were more sensitive to a greater extent of $H_2S$ and petroleum hydrocarbons than to metal content, but the within-site rankings were the same as those achieved for microbiological analyses.

Isolation and identification of culturable bacteria from human skin (배양가능한 피부세균의 분리 및 동정)

  • Bae, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1698-1705
    • /
    • 2020
  • Bacteria were collected from the thumb surface of the twenty young adults that are 20 to 25 years old and cultured on the Luria-Bertani agar. The 16S rDNA of the cultured bacteria was amplified by polymerase chain reaction(PCR) and DNA sequence of the PCR products analyzed. Total 14 different bacterial species were identified by comparing their 16S rDNA sequence with the data in genbank. It appears that each individual has 2.5 different bacterial species in average. Staphylococcal species were the most abundant among the identified bacteria and Micrococcus luteus was the second. Staphylococcal species were isolated at similar frequency between male and female donors but Micrococcus luteus was isolated more frequently from female than male donors. The result obtained in this study might be useful in research of dermatic diseases, searching for new drugs for those diseases and development of new cosmetics.

Application of Molecular Biology to Rumen Microbes -Review-

  • Kobayashi, Y.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 1999
  • Molecular biological techniques that recently developed, have made it possible to realize some of new attempts in the research field of rumen microbiology. Those are 1) cloning of genes from rumen microorganisms mainly in E. coli, 2) transformation of rumen bacteria and 3) ecological analysis with nonculturing methods. Most of the cloned genes are for polysaccharidase enzymes such as endoglucanase, xylanase, amylase, chitinase and others, and the cloning rendered gene structural analyses by sequencing and also characterization of the translated products through easier purification. Electrotransformation of Butyrivibrio fibrisolvens and Prevotella ruminicola have been made toward the direction for obtaining more fibrolytic, acid-tolerant, depoisoning or essential amino acids-producing rumen bacterium. These primarily required stable and efficient gene transfer systems. Some vectors, constructed from native plasmids of rumen bacteria, are now available for successful gene introduction and expression in those rumen bacterial species. Probing and PCR-based methodologies have also been developed for detecting specific bacterial species and even strains. These are much due to accumulation of rRNA gene sequences of rumen microbes in databases. Although optimized analytical conditions are essential to reliable and reproducible estimation of the targeted microbes, the methods permit long term storage of frozen samples, providing us ease in analytical work as compared with a traditional method based on culturing. Moreover, the methods seem to be promissing for obtaining taxonomic and evolutionary information on all the rumen microbes, whether they are culturable or not.

Rapid and Direct Detection of Vibrio vulnificus in Small Octopus (Octopus variabilis) Using Polymerase Chain Reaction

  • Choi, Sang-Ho;Lee, Jee-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.181-187
    • /
    • 1995
  • The cells of Vibrio vulnificus can be induced to the viable but nonculturable (VBNC) state by natural environmental parameters. The V. vulnificus cells in the VBNC state can not be recovered by ordinary laboratory techniques. This nonculturability could often hamper development of effective processing strategies to minimize the number of V. vulnificus in seafoods. Even with V. vulnificus cells in a culturable state, the length of time required to identify the bacteria in contaminated food by phenotyphic characterization may prevent appropriate in-time responses by public health agencies to infections of the bacteria. In the present study, we used polymerase chain reaction (PCR) to develop a rapid and direct detection method for V. vulnificus in small octopus (Octopus variabilis) which is consumed as a raw food in Korea. The region targeted was a 704-base pair (bp) portion of the hemolysin gene, vvhA, of V. vulnificus. The primers designed for PCR amplification were specific for all V. vulnificus sp. tested. Several methods were examined to extract total DNA directly from V. vulnificus seeded into the octopus homogenate and the guanidine isothiocyanate (CITC) method appeared to be most effective. From the octopus homogenate seeded by V. vulnificus at an initial level of $10^2$ CFU/ml of the homogenate and then incubated for 12 h, the targeted sequence was successfully amplified by PCR and the 704-bp DNA fragment was observed by gel electrophoresis. The total completion of this assay requires less than one day.

  • PDF

The Viable but Nonculturable State in Bacteria

  • Oliver James D.
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.93-100
    • /
    • 2005
  • It had long been assumed that a bacterial cell was dead when it was no longer able to grow on routine culture media. We now know that this assumption is simplistic, and that there are many situations where a cell loses culturability but remains viable and potentially able to regrow. This mini-review defines what the 'viable but nonculturable' (VBNC) state is, and illustrates the methods that can be used to show that a bacterial cell is in this physiological state. The diverse environmental factors which induce this state, and the variety of bacteria which have been shown to enter into the VBNC state, are listed. In recent years, a great amount of research has revealed what occurs in cells as they enter and exist in this state, and these studies are also detailed. The ability of cells to resuscitate from the VBNC state and return to an actively metabolizing and culturable form is described, as well as the ability of these cells to retain virulence. Finally, the question of why cells become nonculturable is addressed. It is hoped that this mini-review will encourage researchers to consider this survival state in their studies as an alternative to the conclusion that a lack of culturability indicates the cells they are examining are dead.

Isolation of Surfactant-Resistant Pseudomonads from the Estuarine Surface Microlayer

  • Louvado, Antonio;Coelho, Francisco J.R.C.;Domingues, Patricia;Santos, Ana L.;Gomes, Newton C.M.;Almeida, Adelaide;Cunha, Angela
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants. In this study, we screened a natural surfactant-rich compartment, the estuarine surface microlayer (SML), for cultivable surfactant-resistant bacteria using selective cultures of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB). Resistance to surfactants was evaluated by colony counts in solid media amended with critical micelle concentrations (CMC) of either surfactants, in comparison with non-amended controls. Selective cultures for surfactant-resistant bacteria were prepared in mineral medium also containing CMC concentrations of either CTAB or SDS. The surfactantresistant isolates obtained were tested by PCR for the Pseudomonas genus marker gacA gene and for the naphthalene-dioxygenase-encoding gene ndo. Isolates were also screened for biosurfactant production by the atomized oil assay. A high proportion of culturable bacterioneuston was tolerant to CMC concentrations of SDS or CTAB. The gacA-targeted PCR revealed that 64% of the isolates were Pseudomonads. Biosurfactant production in solid medium was detected in 9.4% of tested isolates, all affiliated with genus Pseudomonas. This study shows that the SML is a potential source of surfactant-resistant and biosurfactant-producing bacteria in which Pseudomonads emerge as a relevant group.

Dynamics of Microbial Community of Aerobic Biofilm Reactor using Rhodococcus sp. EL-GT and Activated Sludge for Phenol Wastewater Treatment (페놀폐수 처리를 위한 Rhodococcus sp. EL-GT와 활성슬러지를 이용한 호기성 생물막 반응기의 미생물 군집 동태)

  • 박근태;원성내;손홍주;남귀숙;이재동;이상준
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.239-245
    • /
    • 2001
  • This research was performed to investigate the dynamics of microbial community by RBC (Rotating Biological Contactor) using Rhodococcus sp. EL-GT and activated sludge. Cell counts revealed by DAPI were compared with culturable bacterial counts from nutrient agar. Colony counts on nutrient agar gave values 20~25% and 1~15% of cell counts (DAPI). The cell counts for the dynamics of bacterial community were determined by combination of in situ hybridization with fluorescently-labelled oligonyucleotide probes and epifluorescence microscopy. Around 90~80% of total cells visualized DAPI were also detected by the bacteria probe EUB 338. For both reactors proteobacteria belonging to the gamma subclass were dominant in the first stage (1 and 2 stage) and proteobacteria belonging to the gamma subclass were dominant in the last stage (3 and 4 stage).

  • PDF

Distribution and Characteristics of Culturable Airborne Bacteria and Fungi in Municipal Wastewater Treatment Plants (하수처리시설에서 배양 가능한 공기중 미생물의 분포 및 특성)

  • Park, Kyo-Nam;Koh, Ji-Yun;Jeong, Choon-Soo;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.38-49
    • /
    • 2011
  • Bioaerosols generated from wastewater treatment plants may create health risks for plant workers and nearby residents. To determine the levels of culturable airborne bacteria and fungi in bioaerosols, samples were seasonally collected above and near the aeration tanks of one feces-urine and three sewage treatment plants in Ulsan, Korea with an impaction-type sampler. In the feces-urine treatment plant, concentrations of heterotrophic bacteria were between $1.3({\pm}0.2){\times}10^3$ and $2.6({\pm}1.2){\times}10^4$ MPN/$m^3$ above the aeration tank and between $1.7({\pm}1.0){\times}10^2$ and $7.2({\pm}2.2){\times}10^3$ MPN/$m^3$ near the aeration tank. Coliform bacteria were detected both above and near the aeration tank. In cases of sewage treatment plant, the numbers of heterotrophic bacteria ranged from $1.9({\pm}1.2){\times}10^1$ to $1.8({\pm}1.2){\times}10^4$ MPN/$m^3$ above the aeration tank and from $5.0({\pm}2.8){\times}10^0$ to $6.6({\pm}2.0){\times}10^3$ MPN/$m^3$ near the aeration tank. At reference sites, the concentrations of heterotrophs in ambient air were measured between $7.0{\times}10^0$ and $2.7{\times}10^1$ MPN/$m^3$. When we isolated and tentatively identified heterotrophic bacteria, Pseudomonas luteola was the most dominant species in bioaerosols from wastewater treatment plants, whereas the most abundant one in reference samples was Micrococcus sp. When we measured fungal concentrations in bioaerosols, they were rather similar regardless of sampling locations and seasons, and such genera as Cladosporium, Alternaria, and Penicillium were commonly identified.

Investigation of Conserved Regions in Lipase Genes (Lipase 유전자의 보존적 영역 탐색)

  • 이동근;김철민;김상진;이상현;이재화
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.723-731
    • /
    • 2003
  • For the investigation of conserved regions in lipase genes, 132 and 24 sequences were obtained from LED (Lipase Engineering Database) and COG (Clusters of Orthologous Groups of proteins), respectively. There was high diversity in lipase genes and peculiar amino acid sequences were conserved for each homologous family of LED. Similar conserved amino acid sequences were detected from COG0657 and Moraxella lipase 1 homologous group of LED. Although many studies have attempted to detect new lipase genes in procaryotes, they have been limited culturable bacteria. The importance of metagenome, including DNA from non-culturable bacteria, is known. Due to the high diversity, we assumed it might be possible to detect new lipase gene from metagenome. Due to the high diversity of nucleotide sequences in lipase genes, 10 primer sets were designed. Designed primer sets were inspected in BLAST of NCBI and they could amplify a part of the lipase gene from 222 to 713 bp. They can amplify 16.7%∼60.0% of each lipase homologous group which was 3.6 fold higher than each sets. They might offer a high probability of detecting new lipase genes, owing to high efficiency and the diversity of lipase genes.

Isolation of an Indigenous Imidacloprid-Degrading Bacterium and Imidacloprid Bioremediation Under Simulated In Situ and Ex Situ Conditions

  • Hu, Guiping;Zhao, Yan;Liu, Bo;Song, Fengqing;You, Minsheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1617-1626
    • /
    • 2013
  • The Bacterial community structure and its complexity of the enrichment culture during the isolation and screening of imidacloprid-degrading strain were studied using denaturating gradient gel electrophoresis analysis. The dominant bacteria in the original tea rhizosphere soil were uncultured bacteria, Rhizobium sp., Sinorhizobium, Ochrobactrum sp., Alcaligenes, Bacillus sp., Bacterium, Klebsiella sp., and Ensifer adhaerens. The bacterial community structure was altered extensively and its complexity reduced during the enrichment process, and four culturable bacteria, Ochrobactrum sp., Rhizobium sp., Geobacillus stearothermophilus, and Alcaligenes faecalis, remained in the final enrichment. Only one indigenous strain, BCL-1, with imidacloprid-degrading potential, was isolated from the sixth enrichment culture. This isolate was a gram-negative rod-shaped bacterium and identified as the genus Ochrobactrum based on its morphological, physiological, and biochemical properties and its 16S rRNA gene sequence. The degradation test showed that approximately 67.67% of the imidacloprid (50 mg/l) was degraded within 48 h by strain BCL-1. The optimum conditions for degradation were a pH of 8 and $30^{\circ}C$. The simulation of imidacloprid bioremediation by strain BCL-1 in soil demonstrated that the best performance in situ (tea soil) resulted in the degradation of 92.44% of the imidacloprid (100 mg/g) within 20 days, which was better than those observed in the ex situ simulations that were 64.66% (cabbage soil), 41.15% (potato soil), and 54.15% (tomato soil).