DOI QR코드

DOI QR Code

Investigation of Conserved Regions in Lipase Genes

Lipase 유전자의 보존적 영역 탐색

  • 이동근 (신라대학교 공과대학 생명공학과) ;
  • 김철민 (부산대학교 의과대학 의학과) ;
  • 김상진 (한국해양연구원 미생물연구실') ;
  • 이상현 (신라대학교 공과대학 생명공학과) ;
  • 이재화 (신라대학교 공과대학 생명공학과)
  • Published : 2003.10.01

Abstract

For the investigation of conserved regions in lipase genes, 132 and 24 sequences were obtained from LED (Lipase Engineering Database) and COG (Clusters of Orthologous Groups of proteins), respectively. There was high diversity in lipase genes and peculiar amino acid sequences were conserved for each homologous family of LED. Similar conserved amino acid sequences were detected from COG0657 and Moraxella lipase 1 homologous group of LED. Although many studies have attempted to detect new lipase genes in procaryotes, they have been limited culturable bacteria. The importance of metagenome, including DNA from non-culturable bacteria, is known. Due to the high diversity, we assumed it might be possible to detect new lipase gene from metagenome. Due to the high diversity of nucleotide sequences in lipase genes, 10 primer sets were designed. Designed primer sets were inspected in BLAST of NCBI and they could amplify a part of the lipase gene from 222 to 713 bp. They can amplify 16.7%∼60.0% of each lipase homologous group which was 3.6 fold higher than each sets. They might offer a high probability of detecting new lipase genes, owing to high efficiency and the diversity of lipase genes.

Lipase 유전자들의 보존적 영역을 탐색하기 위해 LED(Lipase Engineering Database)와 COG (Clusters of Orthologous Groups of proteins)를 통하여 각각 132개와 24개의 서열을 얻어 분석하였다. Lipase 유전자의 염기서열은 아주 다양하였고 LED의 각 상동성그룹 (homologous family) 별로 독특한 아미노산 서열이 보존적인 것을 확인 할 수 있었다. COG0657에 속하는 lipase들은 LED의 Moraxella lipase 1 homologous group과 유사한 아미노산 보존적 영역이 있음을 확인하였다. 다양한 반응 조건에 적응하는 혹은 높은 활성을 갖는 새로운 lipase 유전자를 원핵생물에서 탐색하기 위하여 다양한 시도들이 수행되어 왔지만 그들은 모두 배양가능한 미생물에 국한되어 있었다. 배양할 수 없는 세균의 유전자원을 포함하는 메타게놈에 대한 유용성 역시 최근에 널리 인식되고 있다. Lipase 유전자의 다양성으로 보았을 때 메타게놈을 이용한 새로운 lipase 유전자를 찾는 작업도 가능할 것으로 사료되어 lipase유전자 일부를 (222∼713 bp) 증폭시키는 총 10개의 PCR primer를 설계하였으며 그 가능성을 NCBI의 BLAST를 통하여 검증하였다. Lipase 유전자의 염기서열은 아미노산 서열보다 아주 다양하여 비교적 많은 수의 primer set이 필요하였다. 각 primer set의 증폭효율은 각 LED group의 16.7%와 60.0% 사이였고 개별적인 primer set을 이용할 때 보다 3.6배 효율이 높은 것으로 드러났다. Lipase 유전자의 다양성은 설계된 primer set들을 이용하여 새로운 lipase 유전자를 검출할 가능성을 높이는 것으로 사료되었다.

Keywords

References

  1. Biochimi. Biophys. Acta. v.1478 Overproduction in Escherichia coli, purification and characterization of a family 1.3 lipase from Pseudomonas sp. MIS38. Amada,K.;M.Haruki;T.Imanaka;M.Morikawa;S.Kanaya https://doi.org/10.1016/S0167-4838(00)00046-7
  2. Eur. J. Lipid Sci. Technol. Methods for lipase detection and assay: a critical review Beiwwon,F.;F.Ali;R.Cluude;R.Verger
  3. J. Bacteriol. v.178 Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila Brumlik,M.J.;J.T.Buckley
  4. Curr. Opin. Biotechnol. v.5 Enzymes from extremopiles Demirjian,D.C.;M.V.Francisco;C.S.Cassidy https://doi.org/10.1016/S1367-5931(00)00183-6
  5. Biochimie. v.82 What distinguishes an esterase from a lipase: A novel structural approach Fojan,P.;P.H.Jonson,M.T.Petersen;S.B.Petersen https://doi.org/10.1016/S0300-9084(00)01188-3
  6. Chemistry & Biology v.5 Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products Handelsman,J.;M.R.Rondon;S.F.Brady;J.Clardy;R.M.Goodman https://doi.org/10.1016/S1074-5521(98)90108-9
  7. FEMS Microbiol. Lett. v.195 Screening and characterization of trehalose-oleate hydroiyzing lipase Ishimoto,R.;M.Sugimoto;F.Kawa https://doi.org/10.1111/j.1574-6968.2001.tb10526.x
  8. Curr. Opin. Biotechnol. v.13 Lipases for biotechnology Jaeger,K.E.;T.Eggert https://doi.org/10.1016/S0958-1669(02)00341-5
  9. FEMS Microbiol. Rev. v.15 Bacterial lipases Jaeger,K.E.;S.Ransac;B.W.Dijkstra;C.Colson;M.van Heuvel;O.Misset https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  10. Technol. v.30 Pseudomonas luteola lipase: A new member of the 320-residue Pseudomonas lipase family Enzyme Microb Litthauer,D.;A.Ginster;E.van Eeden Skein https://doi.org/10.1016/S0141-0229(01)00469-0
  11. Korean J. Biotechnol. Bioeng. v.17 Detection of Conserved Genes in Proteobacteria by using a COG Algorithm Lee,D.G.;H.Y.Kang;J.H.Lee;C.M.Kim
  12. Korean J. Biotechnol. Bioeng. v.18 Classification of Archaebacteria and Bacteria using a gene content tree approach Lee,D.G.;H.Y.Kang;S.Kim;S.H.Lee;C.M.Kim;S.J.Kim;J.H.Lee
  13. Korean J. Life Sci. v.13 Genetic composition analysis of marine-origin Euryarchaeota by using a COG Algorithm Lee,D.G.;C.M.Kim;J.H.Lee https://doi.org/10.5352/JLS.2003.13.3.298
  14. Curr. Opin. Biotechnol. v.13 Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space Lorenz,P.;K.Liebeton;F.Niehaus;J.Eck https://doi.org/10.1016/S0958-1669(02)00345-2
  15. Arch. Biochem. Biophys. v.373 Cloning, Overexpression, and Properties of a New Thermophilic and Thermostable Esterase with Sequence Similarity to Hormone-Sensitive Lipase Subfamily from the Archaeon Archaeoglobus fulgidus Manco,G.;E.Giosue;S.D'Auria;P.Herman;G.Carrea;M.Rossi https://doi.org/10.1006/abbi.1999.1497
  16. J. Biotechnol. v.56 Thermoalkalophilic lipase of Bacillus thermocatenulatus large-scale production, purification and properties: aggregation behaviour and its effect on activity Rua,M.R.;C.Schmidt-Dannert;S.Wahl;A.Sprauer;R.D.Schmid https://doi.org/10.1016/S0168-1656(97)00079-5
  17. FEMS Microbiol. Lett. v.217 Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily 1.4 bacterial lipase Ruiz,C.;A.Blanco;F.I.J.Pastor;P.Diaz https://doi.org/10.1111/j.1574-6968.2002.tb11485.x
  18. Journal of Molecular Ctalysis B: Enzymatic v.10 Lipase engineering database: Understanding and exploiting sequence structure- function relationships Pleiss,J.;M.Fischer;M.Peiker;C.Thiele;R.D.Schmid https://doi.org/10.1016/S1381-1177(00)00092-8
  19. Nature v.409 Industrial biocatalysis today and tomorrow Schmid,A.;J.S.Dordick;B.Hauer;A.Kiener;M.Wubbolts;B.Witholt https://doi.org/10.1038/35051736
  20. Bioorg. Med. Chem. v.7 Recombinant microbial lipases for biotechnological applications Schmidt-Dannert,C. https://doi.org/10.1016/S0968-0896(99)00141-8
  21. Biochimi. Biophys. Acta. v.301 Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. Molecular cloning, nucleotide sequence, purification and some properties Schmidt-Dannert,C.;M.L.Rua;H.Atomi;R.D.Schmid
  22. J. Bacteriol. v.173 Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing Schmidt,T.;E.DeLong;N.Pace
  23. J. Bacteriol. v.179 A study of iterative typeⅡ polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms Seow,K.T.;G.Meurer;M.Gerlitz;E.WendtPienkowski;C.R.Hultchinson;J.Davies
  24. Gene v.230 Cloning and sequence analysis of the lipase and lipase chaperone-encoding genes from Acinetobacter calcoaceticus RAG-1, and redefinition of a Proteobacterial lipase family and an analogous lipase chaperone family Sullivan,E.R.;J.G.Leahy;R.R.Colwell https://doi.org/10.1016/S0378-1119(99)00026-8
  25. Science v.296 Prokaryotic diversity -magnitude, dynamics, and controlling factors Torsvik,V.;L.Ovreas;T.F.Thingstad https://doi.org/10.1126/science.1071698
  26. BBA-Prot. Struc. Mole. Enzy. v.1544 Cloning, purifiation and characterisation of Staphylococcus warneri lipase 2 Van Kampen,M.D.;R.Rosenstein;F.Gotz;M.R.Egmond https://doi.org/10.1016/S0167-4838(00)00224-7